Strength of Materials B.Sc. Course for Second stage

By

Assist. Prof. Dr. Ahmed Fadhil

Lecture 2: Simple Stress

Thin-Walled Pressure Vessels

A tank or pipe carrying a fluid or gas under a pressure is subjected to tensile forces, which resist bursting, developed across longitudinal and transverse sections.

1- TANGENTIAL STRESS (Hoop stress or Circumferential Stress), $\boldsymbol{\sigma}_{\mathrm{t}}$

Consider the tank shown being subjected to an internal pressure \mathbf{p}. The length of the tank is \mathbf{L} and the wall thickness is \mathbf{t}. Isolating the right half of the tank:

$$
\begin{aligned}
& F=p A=p D L \\
& T=\sigma_{t} A_{\text {wall }}=\sigma_{t} t L \\
& {\left[\Sigma F_{H}=0\right]} \\
& F=2 T \\
& \quad p D L=2\left(\sigma_{t} t L\right) \\
& \quad \sigma_{t}=\frac{p D}{2 t}
\end{aligned}
$$

If there exist an external pressure $\mathbf{p}_{\mathbf{o}}$ and an internal pressure $\mathbf{p}_{\mathbf{i}}$, the formula may be expressed as:

$$
\sigma_{t}=\frac{\left(p_{i}-p_{0}\right) D}{2 t}
$$

2- LONGITUDINAL STRESS, $\sigma_{\llcorner }$

Consider the free body diagram in the transverse section of the tank:

The total force acting at the rear of the tank \mathbf{F} must equal to the total longitudinal stress on the wall $P_{\boldsymbol{T}}=\sigma_{L} A_{\text {wall. }}$. Since \mathbf{t} is so small compared to D, the area of the wall is close to $\pi D t$

$$
\begin{aligned}
& F=p A=p \frac{\pi}{4} D^{2} \\
& P_{T}=\sigma_{L} \pi D t \\
& {\left[\Sigma F_{H}=0\right]} \\
& \quad P_{T}=F \\
& \quad \sigma_{L} \pi D t=p \frac{\pi}{4} D^{2} \\
& \quad \sigma_{L}=\frac{p D}{4 t}
\end{aligned}
$$

If there exist an external pressure $\boldsymbol{p}_{\mathbf{o}}$ and an internal pressure $\mathbf{p}_{\mathbf{i}}$, the formula may be expressed as:

$$
\sigma_{l}=\frac{\left(p_{i}-p_{0}\right) D}{4 t}
$$

It can be observed that the tangential stress is twice that of the longitudinal stress;

$$
\sigma_{t}=2 \sigma_{l}
$$

3- SPHERICAL SHELL

If a spherical tank of diameter \mathbf{D} and thickness \mathbf{t} contains gas under a pressure of \mathbf{p}, the stress at the wall can be expressed as:

$$
\sigma_{t}=\frac{p D}{4 t}
$$

EX: A cylindrical steel pressure vessel 400 mm in diameter with a wall thickness of 20 mm , is subjected to an internal pressure of $4.5 \mathrm{MN} / \mathrm{m}^{2}$. (a) Calculate the tangential and longitudinal stresses in the steel. (b) To what value may the internal pressure be increased if the stress in the steel is limited to $120 \mathrm{MN} / \mathrm{m}^{2}$?
(a) Tangential stress (longitudinal section):

$$
F=2 T
$$

Longitudinal Section

$$
p D L=2\left(\sigma_{t} t L\right)
$$

$$
\sigma_{t}=\frac{p D}{2 t}=\frac{4.5(400)}{2(20)}
$$

$$
\sigma_{t}=45 \mathrm{MPa}
$$

Longitudinal Stress (transverse section):

$$
\begin{aligned}
& F=P \\
& \frac{1}{4} \pi D^{2} p=\sigma_{l}(\pi D t) \\
& \sigma_{l}=\frac{p D}{4 t}=\frac{4.5(400)}{4(20)}
\end{aligned}
$$

$$
\sigma_{l}=22.5 \mathrm{MPa}
$$

Transverse Section
(b) From (a), $\sigma_{t}=\frac{p D}{2 t}$ and $\sigma_{l}=\frac{p D}{4 t}$ thus, $\sigma_{t}=2 \sigma_{l}$, this shows that tangential stress is the critical.

$$
\begin{aligned}
& \sigma_{t}=\frac{p D}{2 t} \\
& 120=\frac{p(400)}{2(20)} \\
& P=12 \mathrm{MPa}
\end{aligned}
$$

EX: The wall thickness of a 4-ft-diameter spherical tank is 5/16 in. Calculate the allowable internal pressure if the stress is limited to 8000 psi .

Total internal pressure:

$$
P=p\left(\frac{1}{4} \pi D^{2}\right)
$$

Resisting wall:

$$
F=P
$$

$$
\sigma A=p\left(\frac{1}{4} \pi D^{2}\right)
$$

$$
\sigma(\pi D t)=p\left(\frac{1}{4} \pi D^{2}\right)
$$

$$
\sigma=\frac{p D}{4 t}
$$

$$
8000=\frac{p(4 \times 12)}{4\left(\frac{5}{16}\right)}
$$

$$
p=208.33 \mathrm{psi}
$$

Ex: A water tank, 22 ft in diameter, is made from steel plates that are $1 / 2 \mathrm{in}$. thick. Find the maximum height to which the tank may be filled if the circumferential stress is limited to 6000 psi . The specific weight of water is $62.4 \mathrm{lb} / \mathrm{ft}^{3}$.

$$
\begin{aligned}
& \sigma_{t}=6000 \mathrm{psi} \\
& \sigma_{t}=\frac{6000 \mathrm{lb}}{\mathrm{in}^{2}}\left(\frac{12 \mathrm{in}}{\mathrm{ft}}\right)^{2} \\
& \sigma_{t}=864000 \mathrm{lb} / \mathrm{ft}^{2}
\end{aligned}
$$

Assuming pressure distribution to be uniform:

$$
\begin{aligned}
& p=\gamma h=62.4 h \\
& F=p A=62.4 h(D h) \\
& F=62.4(22) h^{2} \\
& F=1372.8 h^{2} \\
& T=\sigma_{t} A_{t}=864000(t h) \\
& T=864000\left(\frac{1}{2} \times \frac{1}{12}\right) h \\
& T=36000 h \\
& \\
& \Sigma F=0 \\
& F=2 T \\
& 1372.8 h^{2}=2(36000 h) \\
& h=52.45 \mathrm{ft}
\end{aligned}
$$

EX: The strength of longitudinal joint in Fig. is $33 \mathrm{kips} / \mathrm{ft}$, whereas for the girth is $16 \mathrm{kips} / \mathrm{ft}$. Calculate the maximum diameter of the cylinder tank if the internal pressure is 150 psi .

Internal pressure, p :

$$
\begin{aligned}
& p=150 \mathrm{psi}=\frac{150 \mathrm{lb}}{\mathrm{in}^{2}}\left(\frac{12 \mathrm{in}}{\mathrm{ft}}\right)^{2} \\
& p=21600 \mathrm{lb} / \mathrm{ft}^{2}
\end{aligned}
$$

For longitudinal joint (tangential stress):

Consider 1 ft length

$$
\begin{aligned}
& F=2 T \\
& p D=2 \sigma_{t} t \\
& \sigma_{t}=\frac{p D}{2 t} \\
& \frac{33000}{t}=\frac{21600 D}{2 t}
\end{aligned}
$$

$$
D=3.06 \mathrm{ft}=36.67 \mathrm{in}
$$

For girth joint (longitudinal stress):

$$
\begin{aligned}
& F=P \\
& p\left(\frac{1}{4} \pi D^{2}\right)=\sigma_{l}(\pi D t) \\
& \sigma_{l}=\frac{p D}{4 t} \\
& \frac{16000}{t}=\frac{21600 D}{4 t}
\end{aligned}
$$

$$
D=2.96 \mathrm{ft}=35.56 \mathrm{in} .
$$

Use the smaller diameter, $D=35.56 \mathrm{in}$.

EX: The tank shown in Fig. is fabricated from $1 / 8$-in steel plate. Calculate the maximum longitudinal and circumferential stress caused by an internal pressure of 125 psi .

Longitudinal Stress:

$$
F=p A=125\left[1.5(2)+\frac{1}{4} \pi(1.5)^{2}\right](12)^{2}
$$

See dimensions in Fig, P-141, thickness, $\mathrm{t}=1 / 8 \mathrm{in}$.

$$
F=85808.62 \mathrm{lbs}
$$

$$
P=F
$$

$$
\sigma_{l}\left[2(2 \times 12)\left(\frac{1}{8}\right)+\pi(1.5 \times 12)\left(\frac{1}{8}\right)\right]=85808.62
$$

$$
\sigma_{l}=6566.02 \mathrm{psi}
$$

$$
\sigma_{l}=6.57 \mathrm{ksi}
$$

Circumferential Stress:

$$
\begin{aligned}
& F=p A=125[(2 \times 12) L+2(0.75 \times 12) L] \\
& F=5250 L \mathrm{lbs} \\
& 2 T=F \\
& 2\left[\sigma_{t}\left(\frac{1}{8}\right) L\right]=5250 \mathrm{~L} \\
& \sigma_{t}=21000 \mathrm{psi} \\
& \sigma_{t}=21 \mathrm{ksi}
\end{aligned}
$$

