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Chapter 4 

 Boolean algebra   

 

4.1   Definition  

Boolean algebra is the mathematics of digital logic in which the values of the 

variables are the truth values true and false, usually denoted 1 and 0, 

respectively. Basic knowledge of Boolean algebra is indispensable to the study 

and analysis of logic circuits. Variable, complement, and literal are terms used 

in Boolean algebra. A variable is a symbol (usually an italic uppercase letter 

or word) used to represent an action, a condition, or data. Any single variable 

can have only a 1 or a 0 value. The complement is the inverse of a variable 

and is indicated by a bar over the variable (overbar). 

There are four connecting symbols used in Boolean algebra. 

1. Equal sign (=): This refers to the sign of equality as in mathematics. 

2. Multiplication sign (·): It refers to the AND operation. 

3. Plus sign (+): This refers to the OR operation. 

4. Inversion sign (‘) or (−): This operation performs a complement of the input 

given to the logic gate. 

 

 

4.2 Laws of Boolean Algebra 

 
The basic laws of Boolean algebra—the commutative laws for addition and 

multiplication, the associative laws for addition and multiplication, and the 

distributive law—are the same as in ordinary algebra. Each of the laws is 

illustrated with two or three variables, but the number of variables is not 

limited to this. 
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4.2.1    Commutative Laws 

The commutative law of addition for two variables is written as 

A + B = B + A 

 

  

 

Application of commutative law of addition. 
 

The commutative law of multiplication for two variables is 

AB = BA 

 

 

 

Application of commutative law of multiplication. 

 

4.2.2    Associative Laws 

The associative law of addition is written as follows for three variables: 

A + (B + C) = (A + B) + C 

 

 

 

Application of associative law of addition. 

The associative law of multiplication is written as follows for three variables: 

A (BC) = (AB) C 
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This law states that it makes no difference in what order the variables are 

grouped when ANDing more than two variables. Figure illustrates this law 

as applied to 2-input AND gates. 

 

 

 

 

4.2.3    Distributive Law 

The distributive law is written for three variables as follows: 

A (B + C) = AB + AC 

 

 

 

 
 

 
 

4.3 Rules of Boolean Algebra 
 

The table below lists 12 basic rules that are useful in manipulating and 

simplifying Boolean expressions. 

 

 

 

 

 

    

A, B, or C can represent a single variable or a combination of variables. 
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Rule 1:    A + 0 = A  

A variable ORed with 0 is always equal to the variable. If the input variable A 

is 1, the output variable X is 1, which is equal to A. If A is 0, the output is 0, 

which is also equal to A. 

   

 

 

 

 

 

Rule 2:    A + 1 = 1 A variable ORed with 1 is always equal to 1. A 1 on an 

input to an OR gate produces a 1 on the output, regardless of the value of the 

variable on the other input. 

  

 

 

 

 

Rule 3:   𝑨 . 𝟎 =  𝟎  

A variable ANDed with 0 is always equal to 0. Any time one input to an AND 

gate is 0, the output is 0, regardless of the value of the variable on the other 

input. 
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Rule 4:    𝑨 . 𝟏 =  𝑨     

A variable ANDed with 1 is always equal to the variable. If A is 0, the output 

of the AND gate is 0. If A is 1, the output of the AND gate is 1 because both 

inputs are now 1s.   

   

 

 

 

 

 

Rule 5:     A + A = A  

A variable ORed with itself is always equal to the variable. If A is 0, then                     

0 + 0 = 0; and if A is 1, then 1 + 1 = 1. 

 

 

  

 

 

 

Rule 6:    𝑨 + 𝑨 = 𝟏  

A variable ORed with its complement is always equal to 1. If A is 0, then                        

0 + 0 = 0 + 1 = 1. If A is 1, then 1 + 1 = 1 + 0 = 1. 
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Rule 7:     𝑨 ∙ 𝑨 = 𝑨 

A variable ANDed with itself is always equal to the variable. If A = 0, then                 

0 #0 = 0; and if A = 1, then 1 #1 = 1. 

   

 

 

 

 

 

Rule 8:    𝑨 ∙ 𝑨 = 𝟎  

A variable ANDed with its complement is always equal to 0. Either A or A 

will always be 0; and when a 0 is applied to the input of an AND gate, the 

output will be 0 also. 

 

 

  

 

 

 

Rule 9:    𝑨̅ = 𝑨  

The double complement of a variable is always equal to the variable. If you 

start with the variable A and complement (invert) it once, you get A. If you 

then take A and complement (invert) it, you get A, which is the original 

variable. 
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Rule 10:    A + AB = A  

This rule can be proved by applying the distributive law, rule 2, and rule 4 as 

follows: 

𝐴 + 𝐴𝐵 = 𝐴 . 1 + 𝐴𝐵 = 𝐴 (1 +  𝐵)    Factoring (distributive law) 

=  𝐴 . 1   Rule 2: (1 +  𝐵)  =  1  

=  𝐴        Rule 4: 𝐴 . 1 = 𝐴 
 

The proof is shown in below, which shows the truth table and the resulting 

logic circuit simplification.  

 

   

 

 

 

 

 

 

 

 

Rule 11:   𝑨 + 𝑨𝑩 = 𝑨 + 𝑩  

This rule can be proved as follows: 

𝐴 + 𝐴𝐵 =  (𝐴 +  𝐴𝐵) + 𝐴𝐵      Rule 10: A = A + AB 

=(𝐴𝐴 +  𝐴𝐵) + 𝐴𝐵     Rule 7: A = AA 

=AA +  AB +  AA + AB    Rule 8: adding AA  =  0 

= (A + A)(A +  B)    Factoring 

= 1 . (A +  B)     Rule 6: A + A = 1 

= A + B    Rule 4: drop the 1 
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The proof is shown in the table below, which shows the truth table and the 

resulting logic circuit simplification. 

   

 

 

 

 

 

 

 

 

Rule 12:      (A + B) (A + C) = A + BC 

 This rule can be proved as follows: 

(A + B)(A + C) = AA + AC + AB + BC     Distributive law 

= A + AC + AB + BC     Rule 7: AA = A 

= A(1 +  C)  +  AB +  BC   Factoring (distributive law) 

= A .1 + AB + BC    Rule 2: 1 + C = 1 

= A(1 +  B) +  BC  Factoring (distributive law) 

= A . 1 +  BC             Rule 2: 1 + B = 1 

= A + BC                  Rule 4: A. 1 = A 

 

The proof is shown in the table below, which shows the truth table and the 

resulting logic circuit simplification. 
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H.W: 

1. Apply the associative law of addition to the expression A + (B + C + D). 

2. Apply the distributive law to the expression A(B +  C +  D). 

 

4.4 DeMorgan’s Theorems 
 

DeMorgan, a mathematician, proposed two theorems that are an important 

part of Boolean algebra. In practical terms, DeMorgan’s theorems provide 

mathematical verification of the equivalency of the NAND and negative-OR 

gates and the equivalency of the NOR and negative-AND gates. 

 

4.4.1  DeMorgan’s first theorem  
 

The complement of a product of variables is equal to the sum of the 

complements of the variables. 

Stated another way, 

The complement of two or more ANDed variables is equivalent to the OR of 

the complements of the individual variables. 

The formula for expressing this theorem for two variables is 
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𝑋𝑌̅̅ ̅̅ =  𝑋̅ + 𝑌̅     ………   (1) 

 

4.4.2 DeMorgan’s second theorem 
 

The complement of a sum of variables is equal to the product of the 

complements of the variables. 

Stated another way, 

The complement of two or more ORed variables is equivalent to the AND of 

the 

complements of the individual variables. 

The formula for expressing this theorem for two variables is 

 

𝑋 + 𝑌̅̅ ̅̅ ̅̅ ̅̅ = 𝑋̅𝑌̅    ………   (2) 

Figure below shows the gate equivalencies and truth tables for Equations 1 

and 2. 
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Example:  Apply DeMorgan’s theorems to the expressions  

Sol. 

 

 

 

Example:  Apply DeMorgan’s theorems to the expressions 

Sol. 

 

 

 

Example:  Prove that   A+AB = A  

Sol.  

         A+AB = A (1+B) 

                     = A . 1 = A 

 

Example:  Prove that   𝐴 + 𝐴̅𝐵 = 𝐴 + 𝐵  

Sol.            

                 𝐴 + 𝐴̅𝐵 = (𝐴 + 𝐴𝐵) + 𝐴̅𝐵 

                                 = 𝐴 + 𝐵(𝐴 + 𝐴̅) 

                                 = 𝐴 + 𝐵. 1 

                                 = 𝐴 + 𝐵 
 

Example:  Apply DeMorgan’s theorems to each expression: 
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Sol. 

 

 

 

 

Example:  Prove that   (𝐴 + 𝐵)(𝐴 + 𝐶)  =  𝐴 + 𝐵𝐶  

 

Sol. 

               (A+B)(A+C)  = AA + AC + AB + BC 
                                     = A + AC + AB + BC  

            = A + (1+C) + AB + BC 

                                     = A.1 + AB + BC 

                                     = A + AB + BC 

            = 𝐴(1 + 𝐵)  +  𝐵𝐶           

                                     = A.1 + BC 

            = A + BC 
 

H.W.: 
 

Apply DeMorgan’s theorems to the following expressions: 

1.                                             2.                                3. 

2. Apply DeMorgan’s theorems to the expression    
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4.5 Logic Simplification Using Boolean Algebra 

 
A logic expression can be reduced to its simplest form or changed to a more 

convenient form to implement the expression most efficiently using Boolean 

algebra. 

Example: Using Boolean algebra techniques, simplify this expression:                                                                     

000000000AB + A(B + C) + B(B + C)  

Sol. 

       AB + AB + AC + BB + BC   distributive law to the second and third terms 

       AB + AB + AC + B + BC     (BB = B) rule 7 

       AB + AC + B + BC    (AB + AB = AB)  rule 5 

       AB + AC + B    (B + BC = B) rule 10 

       B + AC   (AB + B = B)   rule 10 
 

The figure below shows that the simplification process significantly reduced 

the number of logic gates required to implement the expression. Part (a) shows 

that 5 gates are required to implement the expression in its original form; 

however, only 2 gates are needed for the simplified expression, shown in part 

(b). It is important to realize that these two gate circuits are equivalent.   
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Example:   Simplify the following Boolean expression:  

𝐴𝐵 + 𝐴𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝐴̅𝐵̅𝐶 
 

Sol. 

(𝐴𝐵̅̅ ̅̅ )(𝐴𝐶̅̅ ̅̅ ) + 𝐴̅𝐵̅𝐶     DeMorgan’s theorem 

(𝐴̅ + 𝐵̅)(𝐴̅ + 𝐶̅) + 𝐴̅𝐵̅𝐶      DeMorgan’s theorem 

𝐴̅𝐴̅ + 𝐴̅𝐶̅ + 𝐴̅𝐵̅ + 𝐵̅𝐶̅ + 𝐴̅𝐵̅𝐶      distributive law to the two terms 

𝐴̅𝐵̅ + 𝐴̅𝐵̅𝐶 = 𝐴̅𝐵̅(1 + 𝐶) =  𝐴̅𝐵̅      rule 7 (𝐴̅𝐴̅ = 𝐴̅) = A) to the first term  

𝐴̅ + 𝐴̅𝐶̅ + 𝐴̅𝐵̅ + 𝐵̅𝐶̅      rule 10 to the third and last terms. 

𝐴̅ + 𝐴̅𝐶̅ = 𝐴̅(1 + 𝐶̅) =  𝐴̅      rule 10 to the first and second terms 

𝐴̅ + 𝐴̅𝐵̅ + 𝐵̅𝐶̅       

𝐴̅ + 𝐴̅𝐵̅ = 𝐴̅(1 + 𝐵̅) = 𝐴̅       rule 10  to the first and second terms. 

𝐴̅ + 𝐵̅𝐶̅   
     
 

 

 

H.W.: 

 

 

 

 

 

 

 
 


