
38

Circular and Priority Queue

 Circular Queue

The trouble of linear queue is that pretty soon the rear of the queue is at the end of the array (the

highest index). Even if there are empty cells at the beginning of the array, because you've removed

them, you still can't insert a new item because Rear can't go any further.

A Queue with some items removed Rear arrow at the end of the array

 To avoid the problem of not being able to insert more items into the queue even when it's not full,

the Front and Rear arrows wrap around to the beginning of the array. The results a circular

queue (sometimes called a ring buffer). Insert enough items to bring the Rear arrow to the top of

the array (index 9). Remove some items from the front of the array.
Now to insert another item. You'll see the Rear arrow wrap around from index 9 to index 0; the new

item will be inserted there. This situation is shown in below Figure.

Rear arrow wraps around

College of Information Technology / Software Department
………………………………………………………..

Data Structures / Second Class / 2016-2017

 LEC. 7

39

A circular queue is a Queue but a particular implementation of a queue. It is very efficient. It is also quite

useful in low level code, because insertion and deletion are totally independant, which means that you don't have

to worry about an interrupt handler trying to do an insertion at the same time as your main code is doing a

deletion.

In Linear queue:

 No more elements can be inserted in a linear queue now.

In Circular queue:

 In a circular queue, after rear reaches the end of the queue, it can be reset to zero. This helps in refilling

the empty spaces in between.

The difficulty of managing front and rear in an array-based non-circular queue can be overcome if we

treat the queue position with index 0 as if it comes after the last position (in our case, index 9), i.e., we

treat the queue as circular. Note that we use the same array declaration of the queue.

Empty queue:

Enqueuing five items:

40

Dequeuing two items:

Enqueuing five items:

Implementation of operations on a circular queue:

 Testing a circular queue for overflow

There are two conditions:

 (front=0) and (rear=capacity-1) or

 front=rear+1

If any of these two conditions is satisfied, it means that circular queue is full.

 The Enqueue Operation on a Circular Queue

There are three scenarios which need to be considered, assuming that the queue is not full:

1. If the queue is empty, then the value of the front and the rear variable will be -1 (i.e., the

sentinel value), then both front and rear are set to 0.

2. If the queue is not empty, then the value of the rear will be the index of the last element of

the queue, then the rear variable is incremented.

3. If the queue is not full and the value of the rear variable is equal to capacity -1 then rear is

set to 0.

41

 The Dequeue Operation on a Circular Queue

Also, there are three possibilities:

1. If there was only one element in the circular queue, then after the dequeue operation the

queue will become empty. This state of the circular queue is reflected by setting the front and

rear variables to -1.

2. If the value of the front variable is equal to CAPACITY-1, then set front variable to 0.

3. If neither of the above conditions hold, then the front variable is incremented.

//

 Priority Queues

Like an ordinary queue, a priority queue has a front and a rear, and items are removed from

the front. However, in a priority queue,

 Items are ordered by key value so that the item with the lowest key (or in some implementations

the highest key) is always at the front.

 Items are inserted in the proper position to maintain the order.

A priority queue is best understood in comparison with a stack and a queue. To see this, imagine a

supermarket checkout, where customers, each with a certain number of items in the shopping cart, arrive

at the checkout counter:

 ItemsInCart Customer

 6 Mary //last to arrive

 12 Joe

 4 Jill

 9 Pete

 15 Stacy

 7 Bev //first to arrive

 CHECKOUT COUNTER

Suppose also that the entries <6, Mary>, <12, Joe> … <7, Bev> are placed in a data container, to reflect order

of arrival, with <7, Bev> first in, <15, Stacy> next in, and so on, and <6, Mary> in last.

If the cashier serves the customers in order of arrival, that is, <7, Bev> first and <6, Mary>last, we have a

conventional queue, i.e. First In, First Out, or FIFO.

If the cashier serves the customers starting with entries <6, Mary>, and ending with <7, Bev>, we have a

stack, i.e. Last In, First Out, or LIFO.

42

If the cashier serves the customers with entries in the order <4, Jill>, <6, Mary>, <7, Bev>, … ending with

<15, Stacy>, that is, service in order of lowest number of shopping items, we have a priority queue, i.e. The

entry inserted with the lowest priority key, no matter when inserted, is the first entry out.

In this example, the first data item of each entry, the number of shopping items, serves as the priority key.

Notice the technical term entry. A priority queue consists of a set of entries into the queue, each entry

consisting of a priority key and a value.

Implementation

 Linked Lists

 Using a binary Heap – a special binary tree with heap property

We show Front and Rear arrows to provide a comparison with an ordinary queue, but they’re not really

necessary. The front of the queue is always at the top of the array at n-1, and they insert items in order, not at

the rear. Figure below shows the operation of the PriorityQ.

A priority queue consists of entries, each of which contains a key called the priority of the entry.

A priority queue has only two operations other than the usual creation, clearing, size, full, and empty

operations:

 Insert an entry.

 Remove the entry having the largest (or smallest) key.

If entries have equal keys, then any entry with the largest key may be removed first.

Key Comparison Method.

 Normally the entry with the highest priority has the lowest priority key value, and is extracted from the

priority queue first.

 That means that we need a way to compare the key values, so that we can say if the key of one entry is

greater or less than the key of another entry, and which key has the lowest value and which the highest value.

The key comparison method may be very simple, based on integer values, as in the case of number of

shopping items above.

43

The Priority Queue ADT

A priority queue ADT will be implemented as a container of some kind that can support the methods

below.

 constructor

Create a new, empty queue.

insert

Add a new item to the queue.

remove

Remove and return an item from the queue. The item that is returned is the one with the highest

priority.

empty

Check whether the queue is empty.

Applications

 Scheduling jobs on a workstation holds jobs to be performed and their priorities. When a job is

finished or interrupted, highest-priority job is chosen using Extract-Max. New jobs can be added

using Insert function.

 Operating System Design – resource allocation

 Data Compression -Huffman algorithm

 Discrete Event simulation

 (1) Insertion of time-tagged events (time represents a priority of an event -- low time means high

priority)

 (2) Removal of the event with the smallest time tag

 In a time-sharing computer system, for example, a large number of tasks may be waiting

for the CPU. Some of these tasks have higher priority than others. Hence the set of tasks

waiting for the CPU forms a priority queue. Other applications of priority queues include

simulations of time-dependent events (like the airport simulation) and solution of sparse

systems of linear equations by row reduction.

