
Gaussian Beam
Propagation

Gaussian beams play such an important role in optical lasers as well as in longer wavelength
systems that they have been extensively analyzed, starting with some of the classic treat
ments mentioned in Chapter 1. Almost every text on optical systems discusses Gaussian
beam propagation in some detail, and several comprehensive review articles are available.
However, for millimeter and submillimeter wavelength systems there are naturally certain
aspects that deserve special attention, and we emphasize aspects ofquasioptical propagation
that have proven to be of greatest importance at these relatively long wavelengths.

In the following sections we first give a derivation of Gaussian beam formulas based
on the paraxial wave equation, in cylindrical and in rectangular coordinates. We discuss
normalization, beam truncation, and interpretation of the Gaussian beam propagation for
mulas. We next cover higher order modes in different coordinate systems and consider the
effective size of Gaussian beam modes. We then present inverse formulas for Gaussian
beam propagation, which are of considerable use in system design. Finally, we consider
the paraxial approximation in more detail and present an alternative derivation of Gaussian
beam propagation based on diffraction integrals.

2.1 DERIVATION OF BASIC GAUSSIAN BEAM
PROPAGATION

2.1.1 The Paraxial Wave Equation

Only in very special cases does the propagation of an electromagnetic wave result in
a distribution of field amplitudes that is independent of position: the most familiar example
is a plane wave. If we restrict the region over which there is initially a nonzero field, wave
propagation becomes a problem of diffraction, which in its most general form is an extremely
complex vector problem. We treat here a simplified problem encountered when a beam of
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10 Chapter 2 • Gaussian Beam Propagation

radiation that is largely collimated; that is, it has a well-defined direction of propagation but
has also some transverse variation (unlike in a plane wave). We thus develop the paraxial
wave equation, which forms the basis for Gaussian beam propagation. Thus, a Gaussian
beam does have limited transverse variation compared to a plane wave. It is different from
a beam originating from a source in geometrical optics in that it originates from a region of
finite extent, rather than from an infinitesimal point source.

A single component, l/J, ofan electromagnetic wave propagating in a uniform medium
satisfies the Helmholtz (wave) equation

(2.1)

where 1/1 represents any component of E or H. We have assumed a time variation at an
gular frequency W of the form exp(jwt). The wave number k is equal to 21l'IA, so that
k = W(ErJ-Lr )0.5 [c, where Er and J-Lr are the relative permittivity and permeability of the
medium, respectively. For a plane wave, the amplitudes of the electric and magnetic fields
are constant; and their directions are mutually perpendicular, and perpendicular to the prop
agation vector. For a beam of radiation that is similar to a plane wave but for which we
will allow some variation perpendicular to the axis of propagation, we can still assume
that the electric and magnetic fields are (mutually perpendicular and) perpendicular to the
direction of propagation. Letting the direction of propagation be in the positive z direction,
we can write the distribution for any component of the electric field (suppressing the time
dependence) as

E(x,y,z) =u(x,y,z) exp(-jkz), (2.2)

(2.3)

(2.4)

where u is a complex scalar function that defines the non-plane wave part of the beam. In
rectangular coordinates, the Helmholtz equation is

a2E a2E a2E
- + - + - + k2 E = O.ax2 ay2 az2

If we substitute our quasi-plane wave solution, we obtain

a2u a2u a2u au- + - + - -2jk- =0,ax2 ay 2 dZ 2 dZ

which is sometimes called the reduced wave equation.
The paraxial approximation consists of assuming that the variation along the direc

tion of propagation of the amplitude u (due to diffraction) will be small over a distance
comparable to a wavelength, and that the axial variation will be small compared to the
variation perpendicular to this direction. The first statement implies that (in magnitude)
[~(aUldZ)1~Z]A « aulaz, which enables us to conclude that the third term in equa
tion 2.4 is small compared to the fourth term. The second statement allows us to conclude
that the third term is small compared to the first two. Consequently, we may drop the third
term, obtaining finally the paraxial wave equation in rectangular coordinates

a2u a2u au
-+--2jk-=0. (2.5)
dX2 ay2 8z

Solutions to the paraxial wave equation are the Gaussian beam modes that form the basis of
quasioptical system design. There is no rigorous "cutoff" for the application of the paraxial
approximation, but it is generally reasonably good as long as the angular divergence of
the beam is confined (or largely confined) to within 0.5 radian (or about 30 degrees) of the
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(2.6)

(2.8)

(2.9)

zaxis. Errors introduced by the paraxial approximation are shown explicitly by [MART93];
extension beyond the paraxial approximation is further discussed in Section 2.8, and other
references can be found there.

2.1.2 The Fundamental Gaussian Beam Mode Solution
in Cylindrical Coordinates

Solutions to the paraxial wave equation can beobtained in various coordinate systems;
in addition to the rectangular coordinate system used above, the axial symmetry that char
acterizes many situations encountered in practice (e.g., corrugated feed horns and lenses)
makes cylindrical coordinates the natural choice. In cylindrical coordinates, r represents
the perpendicular distance from the axis of propagation, taken again to be the z axis,
and the angular coordinate is represented by c.p. In this coordinate system the paraxial
wave equation is

a2u 1 au 1. a2u au
- + -- + -- - 2jk- = 0,
ar2 r ar r acp2 az

where u == u(r, tp; z). For the moment, we will assume axial symmetry, that is, u is
independent of cp, which makes the third term in equation 2.6 equal to zero, whereupon we
obtain the axially symmetric paraxial wave equation

a2u 1 au au
ar2 + ~ ar - 2jk az = O. (2.7)

From prior work, we note that the simplest solution of the axially symmetric paraxial wave
equation can be written in the form

u(r, z) = A(z) exp [- jkr
2

] ,
2q(z)

where A and q are two complex functions (of z only), which remain to be determined.
Obviously, this expression for u looks something like a Gaussian distribution. To obtain
the unknown terms in equation 2.8, we substitute this expression for u into the axially
symmetric paraxial wave equation 2.7 and obtain

-2jk (~+ aA) + k
2
r
2A

(a
q

_ 1) = O.
q az q2 az

Since this equation must be satisfied for all r as well as all z, and given that the first part
depends only on z while the second part depends on rand z, the two parts must individually
be equal to zero. This gives us two relationships that must be simultaneously satisfied:

and

Equation 2.1Oahas the solution

aq
- = 1
az

q(z) = q(zo) + (z - zo).

(2. lOa)

(2.10b)

(2.11a)
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Without loss of generality, we define the reference position along the z axis to be zo = 0,
which yields

q(z) = q(O) + z. (2.11b)

The function q is called the complex beam parameter (since it is complex), but it is
often referred to simply as the beam parameter or Gaussian beam parameter. Since it
appears in equation 2.8 as 1/q, it is reasonable to write

(2.12)~ = (~) - j (~). '
q q r q I

where the subscripted terms are the real and imaginary parts ofthe quantity 1/q, respectively.
Substituting into equation 2.8, the exponential term becomes

exp ( - ;:r2) = exp [ ( - j;r2
) (~). _(k;2) (~)J (2.13)

The imaginary term has the form of the phase variation produced by a spherical wave front
in the paraxial limit. We can see this starting with an equiphase surface having radius of
curvature R and defining ljJ (r) to be the phase variation relative to a plane for a fixed
value of z as a function of r as shown in Figure 2.1. In the limit r < < R, the phase delay
incurred is approximately equal to

1Tr 2 kr 2

ljJ(r) ~ AR = 2R· (2.14)

We thus make the important identification of the real part of 1/q with the radius of curvature
of the beam

(2.15)

Since q is a function of z, it is evident that the radius of curvature of the beam will depend
on the position along the axis of propagation. It is important not to confuse the phase shift
cP (which we shall see depends on z) with the azimuthal coordinate ((J.

Figure 2.1 Phaseshiftof sphericalwaverelative
to plane wave. The phase delay of the spherical
wave,at distancer fromaxisdefinedby propaga
tion directionof plane wave,is </J(r).

Offset from Axis
of Propagation ,

Reference
Plane

Equiphase
Surface

Radius
of

Curvature

--4~----------.---,,---Axis of
Propagation

The second part ofthe exponential in equation 2.13 is real and has a Gaussian variation
as a function of the distance from the axis of propagation. Taking the standard form for a
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Gaussian distribution to be

f(r) = f(O) exp [ - (~)2}

13

(2.16)

we see that the quantity ro represents the distance to the 1/ e point relative to the on-axis
value. To make the second part of equation 2.13 have this form we take

(2.17)

(2.18)

(2.19)

(2.21a)

(2.21b)

and thus define the beam radius w, which is the value of the radius at which the field falls
to 1/ e relative to its on-axis value. Since q is a function of z, the beam radius as well as the
radius of curvature will depend on the position along the axis of propagation.

With these definitions, we see that the function q is given by

1 1 jA
q= R - 1CW2'

where both Rand W are functions of z.
At z = 0 we have from equation 2.8, u(r, 0) = A (0) exp[ - j kr 2/2q (0)], and if we

choose Wo such that Wo = ['Aq (0) / j n ]0.5, we find the relative field distribution at z = 0 to
be

uir, 0) = u(O. 0) exp ( ~2).

where Wo denotes the beam radius at z = 0, which is called the beam waist radius. With
this definition, we obtain from equation 2.11b a second important expression for q:

j 1C w 5
q =-- + z. (2.20)

A

Equations 2.18 and 2.20 together allow us to obtain the radius of curvature and the
beam radius as a function of position along the axis of propagation:

I (JrW2)2
R=Z+~ T

W = Wo [I + (nA~5rr'5
We see that the the beam waist radius is the minimum value of the beam radius and that it
occurs at the beam waist, where the radius of curvature is infinite, characteristic of a plane
wave front. The transverse spreading of a Gaussian beam as it propagates, together with
drop in on-axis amplitude, are illustrated in Figure 2.2a, while the behavior of the radius of
curvature is shown schematically in Figure 2.2b. The relationships given in equations 2.21a
and 2.21b are fundamental for Gaussian beam propagation, and we will return to them in
subsequent sections. In particular, the quantity 1C w5/A, called the confocal distance, plays
a prominent role and is discussed further in Section 2.2.4.

To complete our analysis of the basic Gaussian beam equation, we must use the second
of the pair of equations obtained from substituting our trial solution in the paraxial wave
equation. Rewriting equation 2.10b, we find dA/ A = -dz/q, and from equation 2.10a we
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Figure 2.2 Schematic diagram of Gaussian beam propagation. (a) Propagating beam in
dicating increase in beam radius and diminution of peak. amplitude as distance
from waist increases. (b) Cut through beam showing equiphase surfaces (bro
ken lines), beam radius w, and radius of curvature R.
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(2.22)

have dz =dq so that we can write dA/A = -dq /q. Hence, A(z)/A(O) = q(O)/q(z), and
substituting q from equation 2.20, we find

A(z) 1 + jAz/TtW5

A(O) = 1+ (Az/TtW5)2'

It is convenient to express this in terms of a phasor, and defining

AZ
tan <Po = --2'

JrWo
(2.23)

we see that

A(z) Wo- = - exp(j<Po). (2.24)
A(O) W

The Gaussian beam phase shift, <Po, also is discussed in more detail below. If we
take the amplitude on-axis at the beam waist to be unity, we have the complete expression
for the fundamental Gaussian beam mode

Wo (-r
2

jJrr
2

)
u(r, z) = -:;; exp w 2 - >:R+ j</Jo . (2.25a)

The expression for the electric field can be obtained immediately using equation 2.2, and
differs only owing to the plane wave phase factor, so we find

E(r, z) = (:0) exp C:: -jk; - j:;2 + NO)' (2.25b)

with the variation in w, R, and <Po as a function of zbeing given by equations 2.21 and 2.23.

2.1.3 Normalization

(2.26a)

(2.26c)

(2.26d)

(2.26b)

To relate the expression for the electric field given above to the total power in a
propagating Gaussian beam, we assume (again in the paraxial limit) that the electric and
magnetic field components are related to each other like those in a plane wave. Thus, the total
power is proportional to the square of the electric field integrated over the area of the beam.
A convenient normalization is to set the integral (extending from radius 0 to (0) to unity,
namely, J IE1

2 • 2Tt r dr = 1. Using the electric field distribution from equation 2.25b,
we find that this integral, evaluated at z = 0, gives n w5/2. Consequently, the normalized
electric field distribution at any distance along the axis of propagation is given by

(
2

)
0.5 (2 . 2 )-r jJrr

E(r,Z)= - exp --jkz---+j</Jo.
TtW2 w2 AR

Relating this numerically to the power flow depends on the system of units employed.
The normalized form for the electric field distribution will be that used here, unless otherwise
indicated. Together with the equations

1 (JrW
2)2

R=z+~ T '

[
2]0.5

W = Wo 1+ (JrA~5) ,
AZ

tan <Po = --2 '
Jrwo



(2.28b)
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we have completely described the behavior of the fundamental Gaussian beam mode that
satisfies the paraxial wave equation.

2.1.4 Fundamental Gaussian Beam Mode in Rectangular
Coordinates: One Dimension

It is possible to consider a beam that has variation in one coordinate perpendicular
to the axis of propagation but is uniform in the other coordinate. Then, the paraxial wave
equation (equation 2.5) for variation along the x axis only reduces to

a2u au
ax2 - 2jk 8z = O. (2.27)

A trial solution of the form u(x, z) = Ax (z) exp[- j kx 2/2qx (z)] together with the require
ment that the solution be valid for all values of x and z, leads to the conditions

8qx
- = 1 (2.28a)az

and

aA x 1 Ax
~ = -2 qx

The first of this pair of equations is identical to equation 2.1Oa, suggesting a solution similar
to that used before (equation 2.20)

. 2
jJrWOx

qx = -A-+ Z, (2.29a)

and we find this to be an appropriate choice. This leads to analogous definitions of the real
and imaginary parts of qx

(2.29b)

(2.30)

and we find that the solution has the same form as in the axially symmetric case, in terms of
beam radius, radius of curvature, and the variation of W x and R, as a function of distance
along the axis of propagation. The solution to equation 2.28b has the form Ax (z)/ A (0) =
[qx(O)/qx(Z)]0.5. The real part of the solution now has a square root dependence on w, as is
appropriate for variation in one dimension, and a phase shift half as large as in the preceding
case. The normalized form of the electric field distribution is

(
2

)
0.25 (2 . 2 .A.)X JJr X J'I'Ox

E(x, z) = -2 exp -2" - jk; - -- + - ,
JrWx W x ARx 2

with Q>ox defined analogously to Q>o in equation 2.26 and the variation of Rx, wx, and Q>ox
given by equations 2.26b through 2.26d.

2.1.5 Fundamental Gaussian Beam Mode in Rectangular
Coordinates: Two Dimensions

We use a similar approach to solve the paraxial waveequation in this case, employing
a trial solution of the form u(x, y, z) = Ax(z)Ay(z) exp(- jkx2/2qx) exp(- jky2/2qy).
This form is motivatedby our desire to keep the solution independent in the two orthogonal
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(2.31a)and

coordinates. The solution separates, and with the requirement that it be valid independently
for all x and y, we obtain the conditions

aqx = 1
az

together with

aA x __ ~ Ax and aAy __ ~ Ay (2.31b)
dZ 2 qx dZ - 2 qy

The field distribution is just the product of x and y portions, and the normalized form

is

(
2 )0.5

E(x, y, z) = -
1TWxWy

(
x2 y2 j1Tx2 j Jr y2 jt/>Ox jt/>Oy)

'exp -2"-2"------+--+ -- ,
W x W y 'ARx 'ARy 2 2

(2.32a)

where

[
2]0.5

Wx= WOx 1+ (Jr~~x) , (2.32b)

[
2] 0.5

W y = wOy 1+ (Jr~5Y) , (2.32c)

(
2)2I JrWOx

R, = z + ~ -'A- , (2.32d)

(
2)2I JrwOy

Ry=z+~ -'A- , (2.32e)

_) ( AZ )t/>ox = tan --2 '
1TWox

(2.320

(2.32g)_) ( AZ )cPOy = tan --2 .
:rrwOy

In addition to the independence of the beam waist radii along the orthogonal co
ordinates, we can choose the reference positions along the z axis, for the complex beam
parameters qx and qy, to be different (which is just equivalent to adding an arbitrary relative
phase shift). The critical parameters describing variation of the Gaussian beam in the two
directions perpendicular to its axis of propagation are entirely independent. This means
that we can deal with asymmetric Gaussian beams, if these are appropriate to the situation,
and we can consider focusing (transformation) of a Gaussian beam along a single axis
independent of its variation in the orthogonal direction.

In the special case that (1) the beam waist radii WOx and WOy are equal and (2) the beam
waist radii are located at the same value of z, we regain the symmetric fundamental mode
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Gaussian beam (e.g., for Wo = WOx = wOy , R = R, = Ry ) ; and noting that r 2 = x 2+ y2,
we see that equation 2.32 becomes identical to equation 2.26.

2.2 DESCRIPTION OF GAUSSIAN BEAM PROPAGATION

2.2.1 Concentration of the Fundamental Mode Gaussian
Beam Near the Beam Waist

The field distribution and the power density of the fundamental Gaussian beam mode
are both maximum on the axis of propagation (r = 0) at the beam waist (z = 0). As
indicated by equation 2.26a, the field amplitude and power density diminish as z and r

vary from zero. Figure 2.3 shows contours of power density relative to maximum value.
The power density always drops monotonically as a function of r for fixed z, reflecting its
Gaussian form. For r / Wo :s 1/.J2, the relative power density decreases monotonically
as z increases. For any fixed value of r > wo/.J2 corresponding to Pre) < -:'. there
is a maximum as a function of z, which occurs at z = (llW6/A)[2(r/wo)2 - 1]°·5. This
maximum, which results in the "dog bone" shape of the lower contours in the figure, is a
consequence of the enhancement of the power density at a fixed distance from the axis of
propagation that is due to the broadening of the beam (cf. [MOOS91 ]).

Figure 2.3 Contours of relative power density in
propagating Gaussian beam normalized to peak
on the axis of propagation (r = 0) at the beam
waist (z = 0). The contours are at values 0.10,
0.15, 0.20, 0.25, ... relative to the maximum
value, which reflect the diminution of on-axis peak
power density and increasing beam radius as the
beam propagates from the beam waist.
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2.2.2 Fundamental Mode Gaussian Beam and Edge Taper

The fundamental Gaussian beam mode (described by equations 2.26, 2.30, or 2.32
depending on the coordinate system) has a Gaussian distribution of the electric field per-
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pendicular to the axis of propagation, and at all distances along this axis:

IE(r, z)1 = exp [_ (~)2],
1£(0, z)1 w

19

(2.33a)

where r is the distance from the propagation axis. The distribution of power density is
proportional to this quantity squared:

P(r) [( r )2]
P(O) = exp -2 ~ , (2.33b)

and is likewise a Gaussian, which is an extremely convenient feature but one that can lead
to some confusion. Since the basic description of the Gaussian beam mode is in terms of
its electric field distribution, it is most natural to use the width of the field distribution to
characterize the beam, although it is true that the power distribution is more often directly
measured. The latter consideration has led some authors to define the Gaussian beam in
terms of the width of the distribution of the power (cf. [ARNA76]), but we will use the
quantity w throughout this book to denote the distance from the propagation axis at which
the field has fallen to 1/ e of its on-axis value.

It is straightforward to characterize the fundamental mode Gaussian beam in terms
of the relative power level at a specified radius. The edge taper Te is the relative power
density at a radius re , which is given by

P(re)
T. --

e - P(O)·

With the power distribution given by equation 2.33b we see that

(2.34a)

(2.34b)

The edge taper is often expressed in decibels to accommodate efficiently a large dynamic
range, with

(2.35a)

The fundamental mode Gaussian of the electric field distribution in linear coordinates
and the power distribution in logarithmic form are shown in Figure 2.4.

The edge radius of a beam is obtained from the edge taper (or the radius from any
specified power level relative to that on the axis of propagation) using

~ = 0.3393[Te (dB)]o.5.
W

(2.35b)

Some reference values are provided in Table 2.1. Note that the full width to half
maximum (fwhm) of the beam is just twice the radius for 3 dB taper, which is equal to
1.175w. A diameter of 4w truncates the beam at a level 34.7 dB below that on the axis of
propagation and includes 99.97% of the power in the fundamental mode Gaussian beam.
This is generally sufficient to make the effects of diffraction by the truncation quite small.
The subject of truncation is discussed further in Chapters 6 and 11.

For the fundamental mode Gaussian in cylindrical coordinates, the fraction of the
total power contained within a circle of radius re centered on the beam axis is found using
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Figure 2.4 Fundamental mode Gaussian beam field distribution in linear units (left) and
powerdistribution in logarithmicunits (right). The horizontalaxis is the radius
expressed in terms of the beam radius, w.

TABLE 2.1 Fundamental Mode Gaussian
Beam and Edge Taper

re/w Te(re) F(re) t; (dB)

0.0 OOסס.1 OOסס.0 0.0
0.2 0.9231 0.0769 0.4
0.4 0.7262 0.2739 1.4
0.6 0.4868 0.5133 3.1
0.8 0.2780 0.7220 5.6
1.0 0.1353 0.8647 8.7
1.2 0.0561 0.9439 12.5
1.4 0.0198 0.9802 17.0
1.6 0.0060 0.9940 22.2
1.8 0.0015 0.9985 28.1
2.0 0.0003 0.9997 34.7
2.2 0.0001 0.9999 42.0

equation 2.33 to be

Fe(re) =1::" IE(r)12
• 'In r dr = 1 - Te(re). (2.36)

Thus, the fractional power of a fundamental mode Gaussian that falls outside radius re is
just equal to the edge taper of the beam at that radius. Values for the fraction of the total
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power propagating in a fundamental mode Gaussian beam as a function of radius of a circle
centered on the beam axis are also given in Table 2.1 and shown in Figure 2.5.

0.8

0.6

0.4

I
I

" Fractional Power Included
I

I
I

I
I

I

I,,,

Relative Power Density

0.2

2.00.5 1.0 1.5

Radius / Gaussian Beam Radius

o.a ~---L--.L..~--J---L.-.....L.-..L--~..L..-...JI--..L--L-...L.......a;;;::=2:::0""'-'--..L-.-..L-.-L--J

0.0

Figure 2.5 Fundamentalmode Gaussian beam and fractional powercontained included in
circular area of specified radius.

In addition to the beam radius describing the Gaussian beam amplitude and power
distributions, the Gaussian beam mode is defined by its radius of curvature. In the parax
ial limit, the equiphase surfaces are spherical caps of radius R, as indicated in Figure
2.2b. As described above (Section 2.1.2), we have a quadratic variation of phase perpen
dicular to the axis of propagation at a fixed value of z. The radius of curvature defines
the center of curvature of the beam, which varies as a function of the distance from the
beam waist.

2.2.3 Average and Peak Power Density in a Gaussian Beam

The Gaussian beam formulas used here (e.g., equation 2.26a) are normalized in the
sense that we assume unit total power propagating. This is elegant and efficient, but in
some cases-high power radar systems are one example-it is important to know the actual
power density. Since one of the main advantages of quasioptical propagation is the ability
to reduce the power density by spreading the beam over a controlled region in space, we
often wish to know how the peak power density depends on the actual beam size. From
equation 2.26a we can write the expression for the actual power density Pact in a beam with
total propagating power Ptot as

Pacl(r) = PIOI Jr~2 exp[ -2 (S)2]. (2.37)



(2.40)

(2.39)

22 Chapter 2 • Gaussian Beam Propagation

Using equation 2.35b to relate the beam radius to the edge taper T, at a specific radius re ,

we find

[
Te(dB)] r:

Pmax = Pact(O) = 4.343 rrr'{ (2.38)

This expression is useful if the relative power density or taper is known at any particular
radius reo Ifwe consider re to be the "edge" of the system defined by some focusing element
or aperture, and as long as there has not been too much spillover, the second term on the
right -hand side is the average power density,

r:
Pay = -2'»r:

and we can relate the peak and average power densities through

P, - [Te(dB)] Pay = 2r
2
; Pay.

max - 4.343 W

For a strong edge taper of 34.7 dB produced by taking re = 2w, we find Pmax = 8Pay• On
the other hand, for the very mild edge taper of 8.69 dB, obtained from re = w (a taper that
generally is not suitable for quasioptical system elements but is close to the value used for
radiating antenna illumination, as discussed in Chapter 6), Pmax =2Pay• This range of 2 to
8 includes the ratios of peak to average power density generally encountered in Gaussian
beam systems.

2.2.4 Confocal Distance: Near and Far Fields

The variation of the descriptive parameters of a Gaussian beam has a particularly
simple form when expressed in terms of the confocal distance or confocal parameter

Jrw2
Zc = _0; (2.41)

A

note that this parameter could be defined in a one-dimensional coordinate system in terms
of WOx or wOy • This terminology derives from resonator theory, where z, plays a major role.
The confocal distance is sometimes called the Rayleigh range and is denoted Zo by some
authors and zby others. Using the foregoing definition for confocal distance, the Gaussian
beam parameters can be rewritten as

Z2
R=z+-f..,

Z
(2.42a)

(2.42b)w = WO [1 + (~rrs

,

~o = tan"! (~). (2.42c)

For example, for a wavelength of 0.3 em and beam waist radius Wo equal to 1 em,
the confocal distance is equal to 10.5 em. We see that the radius of curvature R, the beam
radius w, and the Gaussian beam phase shift l/>o all change appreciably between the beam
waist, located at z = 0, and the confocal distance at z = Zc.
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One of the beauties of the Gaussian beam mode solutions to the paraxial wave equation
is that a simple set of equations (e.g., equations 2.42) describes the behavior of the beam
parameters at all distances from the beam waist. It is still natural to divide the propagating
beam into a "near field," defined by 2 < < z, and a "far field," defined by 2 > > z-, in
analogy with more general diffraction calculations. The "transition region" occurs at the
confocal distance Ze.

At the beam waist, the beam radius w attains its minimum value wo, and the electric
field distribution is most concentrated, as shown in Figure 2.2a. As required by conservation
of energy, the electric field and power distributions have their maximum on-axis values at
the beam waist. The radius of curvature of the Gaussian beam is infinite there, since the
phase front is planar at the beam waist. The phase shift <Po, which is the on-axis phase of a
Gaussian beam relative to a plane wave, is, by definition zero at the beam waist.

Away from the beam waist, the beam radius increases monotonically. As described by
equation 2.42b and as shown in Figure 2.6, the variation of w with 2 is seen to be hyperbolic.
In the near field, the beam radius is essentially unchanged from its value at the beam waist;
w ~ v0. WOo Thus, we can say that the confocal distance defines the distance over which the
Gaussian beam propagates without significant growth-meaning that it remains essentially
collimated. As we move away from the waist, the radius of curvature, as described by
equation 2.42a and shown in Figure 2.6, decreases until we reach distance z..

At a distance from the waist equal to z., the beam radius is equal to v0.wo, the radius
of curvature attains its minimum value equal to 22c , and the phase shift is equal to n /4. At
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Figure 2.6 Variation of beam radius wand radius of curvature R of Gaussian beam as
a function of distance z from beam waist. The beam radius is normalized to
the value at the beam waist-the beam waist radius wo, while the radius of
curvature is normalized to the confocal distance z, = 1f w5/A.
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distances from the waist greater than zc, the beam radius grows significantly, and the radius
of curvature increases.

In the far field, z > > Zc, the beam radius grows linearly with distance. The growth
of the 1/e radius of the electric field can be defined in terms of an angle 0 = tan- 1(w / z).
and in the far-field limit we obtain the asymptotic beam growth angle 80, given by

00 = lim [tan-I (!!!.)] = tan-I (~), (2.43a)
Z»Zc Z JrWo

as shown in Figure 2.7. As a numerical example, we see that for A = 0.3 cm and Wo =
1 ern, 00 ~ 0.1 radian. The small-angle approximation can generally be used satisfactorily
in the paraxial limit, giving

~ A
00 =-.

JrWo
(2.43b)
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Figure 2.7 Divergence angle,80, of Gaussianbeam illustratedin tenus of the asymptotic
growthangleof the beamradiusas a functionof distancefromthe beam waist.

In the far field, it is convenient to express the electric field distribution as a function of
angle away from the propagation axis. The usual field distribution as a function of distance
from the axis of propagation becomes a Gaussian function of the off-axis angle ():

E(O) =exp [_ (!)2].
£(0) 00

(2.44)

This is, of course, a reflection of the constancy of the form of the Gaussian beam. It is also
a convenient feature in that, for example, the fraction of a power outside a specified angle,
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()e, is given by an expression of the same form used for the distribution as a function of
radius (equation 2.36), but with ()e and ()o substituted for r, and WOo

From equation 2.42a we see that in the far field the radius of curvature also increases
linearly with distance, since for z > > Ze, R -+ z. In this limit, the radius of curvature is
just equal to the distance from the beam waist. The phase shift has the asymptotic limit
cPo == 1C /2 in two dimensions. This is an example of the Gouy phase shift, which occurs
for any focused beam of radiation ([SIEG86], Section 17.4, pp. 682-684; [BOYD80]), but
note that the phase shift is only half this value for a Gaussian beam in one dimension.

Useful formulas that summarize the propagation of a symmetric fundamental mode
Gaussian beam in a cylindrical coordinate system are collected for convenient reference in
Table 2.2.

TABLE 2.2 Summary of Fundamental Mode Gaussian Beam Formulas1

[
2 ] 0.5 [_?- j1Cr

2
]E(r, z) = -- exp -- - jk; - -- + jq,o(z)

1C w2(z) w 2(Z) AR(z)

[ (
AZ )2] 0.5

w(z) = Wo I + 1twij

per) [( r )2]
P(O) = exp -2 w(z)

8 - ~o - 1tWo

8fwhm =l.18 80

2
(1tW 2 / A)

R(z) = z + __0_
Z

Transverse field distribution2

Beam radius

Relative power distribution transverse
to axis of propagation

Edge taper

Far-field divergence angle

Far-field beam width of power
distribution to half-maximum

Radius of curvature

Phase shift

I Symmetric beam having waist radius Wo located at z = 0 along axis of propagation z. The transverse
coordinate is r, which is limited by edge radius re for truncated beam.

2 Normalized so that fa 00 IE 1
2

2 1C rdr = I.

2.3 GEOMETRICAL OPTICS LIMITS OF GAUSSIAN BEAM
PROPAGATION

The geometrical optics limit is that in which A -+ 0, so that effects of diffraction become
unimportant. Some caution is necessary to apply this to Gaussian beam formulas, since
taking the limit A -+ 0 for fixed value of wo is equivalent to making z, -+ 00, and the region
of interest is always in the near field of the beam waist. The resulting asymptotic behavior
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W ~ Wo, R ~ 00, and 00 -+ 0 is what we would expect from a perfectly collimated beam
that suffers no diffraction effects.

If we wish to maintain a finite value of zc, one convenient way is to let the waist
radius approach zero along with the wavelength. In this situation, we have 00 ~ constant,
and W ~ Boz while R ~ z. This behavior is just what we expect for a geometrical beam
diverging from a point source.

(2.45)

2.4 HIGHER ORDER GAUSSIAN BEAM MODE SOLUTIONS
OF THE PARAXIAL WAVE EQUATION

The Gaussian beam solutions of the paraxial wave equation for the different coordinate
systems presented in Section 2.1 were indicated to be the simplest solutions of this equation
describing propagation of a quasi-collimated beam of radiation. While certainly the most
important and most widely used, they are not the only solutions. In certain situations
we need to deal with solutions that have a more complex variation of the electric field
perpendicular to the axis of propagation: these are the higher order Gaussian beam
mode solutions. Such solutions have polynomials of different kinds superimposed on the
fundamental Gaussian field distribution. The higher order beam modes are characterized
by a beam radius and a radius of curvature that have the same behavior as that of the
fundamental mode presented above, while their phase shifts are different. Higher order
Gaussian beam modes in cylindrical coordinates must be included to deal with radiating
systems that have a high degree of axial symmetry but do not have perfectly Gaussian
radiation patterns (e.g., corrugated feed horns). Higher order beam modes in rectangular
coordinates can be produced by an off-axis mirror, as discussed in Chapter 5, or they can be
the result of the non-Gaussian field distribution in a horn (such as a rectangular feed horn;
cf. Chapter 7).

2.4.1 Higher Order Modes in Cylindrical Coordinates

In a cylindrical coordinate system, a general solution must allow variation of the
electric field as a function of the polar angle cp. In addition, a trial solution need not be
limited to the purely Gaussian form employed earlier (equation 2.8), but may contain terms
with additional radial variation. A plausible trial solution for such a higher order solution is

u(r, cp, z) = A(z) exp [- jkr
2

] S(r) exp(jmcp),
2q(z)

where the complex amplitude A(z) and the complex beam parameter q(z) depend only on
distance along the propagation axis, S(r) is an unknown radial function, and m is an integer.
Assuming the same form for q as obtained for the fundamental Gaussian beam mode in
Section 2.1.2, we find that the paraxial wave equation reduces to a differential equation for
S. The solutions obtained are

(5 )m (2r2)
S(r) = --:;;;- L pm w2 ' (2.46)
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(2.51)

where w is the beam radius as defined and used previously and L pm is the generalized La
guerre polynomial. In the Gaussian beam context, p is the radial index and m is the angular
index. The polynomials L pm (u) are solutions to Laguerre's differential equation [MARG56]

d2L
pm dL pm

u-2- + (m + 1 - u)-d- + pL pm = 0, (2.47)
du u

and can conveniently be obtained from the expression [GOUB69]

e''u?" dP
L m(u) = (e-U u p+m). (2.48)

p p! du!'

They can also be obtained from direct series representations ([ABRA65], [MART89])

l=p (p+m)!(-u)l
Lpm(u) =t; (m + l)!(p -l)!l!' (2.49)

Some of the low order Laguerre polynomials are

LOm (u) = 1 (2.50)

L1m(u) = 1+ m - u

L2m(U) = 4[(2 + m)(l + m) - 2(2 + m)u + u2]

L 3m(u) = ~(3 + m)(2 + m)(l + m) - 3(3 + m)(2 + m)u + 3(3 + m)u 2 - u3].

A solution to the paraxial wave equation in cylindrical coordinates with the Laguerre
polynomial having indices p and m is generally called the pm Gaussian beam mode or
simply the pm mode, and the normalized electric field distribution is given by

Epm(r, q;, z) = [ 2p! ]0.5 _1_ [5]m c.; ( 2
2r

2
)

xtp + m)! w(z) w(z) w (z)

. exp [~~:) - jkz -1;;Z2) - j (2p + m + 1)¢o(Z)]

. exp(jmq;),

where the beam radius w, the radius of curvature R, and the phase shift (/)0 are exactly the
same as for the fundamental Gaussian beam mode. Aside from the angular dependence
and the more complex radial dependence, the only significant difference in the electric field
distribution is that the phase shift is greater than for the fundamental mode by an amount
that depends on the mode parameters.

These higher order Gaussian beam mode solutions are normalized so that each rep
resents unit power flow (cf. Section 2.1.3), and they obey the orthogonality relationship

IIrdrdcpEpm(r,cp,z)E;n(r,cp,z) = OpqOmn. (2.52)

It is sometimes convenient to make combinations of these higher order Gaussian
beam modes that are real functions of tp, This can be done straightforwardly by combining
exp(jmcp) and exp( - j mtp) terms into cos(mq;) and sin(mcp) beam mode functions. To
preserve the correct normalization, the beam mode amplitudes must be multiplied by a
factor equal to 1 for m = 0 and equal to ,j2 otherwise.

If we wish to consider modes that are axially symmetric (independent of cp), we
choose from those defined by equation 2.51 the subset having m = O. These are often used



28 Chapter 2 • Gaussian Beam Propagation

in describing systems that are azimuthally symmetric but are not exactly described by the
fundamental Gaussian beam mode, such as a corrugated feedhom (cf. Chapter 7). These
modes can bewritten as

Epo(r, z) = Lr:2f5 LpO (~:) exp [-:: - jkz - j;;2 + j(2p + 1)4>0l (2.53)

where we have omitted explicit dependence of the various quantities on distance along the
axis of propagation. The functions Lpo are the ordinary Laguerre polynomials that can be
obtained from equations 2.47 to 2.49 with m = 0 since Lp(u) == Lpo(u). They are given by

e" dP
L (u) = -_(e-U u''), (2.54)

P p!du P

or by the series representation

(2.55)
l=p p!(-u)'

Lp(u) = t; (p -l)!l!l!·

The amplitude distributions transverse to the axis of propagation of some Gauss
Laguerre beams of low order are shown in Figure 2.8. Two-dimensional representations
of the Eo and E2 modes are shown in Figures 2.9a and 2.9b, respectively. The axially
symmetric beam mode of order p has p zero crossings for 0 ~ r ~ 00, with the sign
of the electric field reversing itself in each successive annular region. The power density
distribution thus has p + 1 "bright rings," including the central "spot." The non-axially

4.0
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Radius I Gaussian Beam Radius

0.0

0.5

-0.5 L--..l~--L---4--'-~-"'--..L----L.-~--L-......a..--"-----&....-~~...a..--,--"",,---,,

0.0

Figure 2.8 Electricfielddistribution transversetoaxisof propagation, ofaxiallysymmetric
Gauss-Laguerrebeam modes Eo (fundamental mode) through E4.
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(b)

Figure 2.9 Two-dimensional representations of axially symmetric Gauss-Laguerre beam
modes: (a) fundamental Eo mode and (b) £2 mode.
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symmetric modes are more complex; the pm mode (with cos mtp or sin mtp) has each
annular region broken up into 2m + 80m zones with alternating signs, for 0 ~ ({J ~ 2n.
Thus, the power density has (2m + 80m) (p + I) bright regions.
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2.4.2 Higher Order Modes in Rectangular Coordinates

When a rectangular coordinate system is used for the higher order modes, the gen
eral two-dimensional Gaussian beam mode is simply the product of two one-dimensional
functions. Each of these is a more general solution to the paraxial wave equation (equation
2.5) above. Considering the x coordinate alone for the moment, we include an additional
x-dependent function H to obtain the higher order modes. A trial solution of the form

(-I2X
) [jkX 2

]u(x, z) = A(z) H - exp ---
w(z) 2q(z)

(2.56)

is successful if we take the beam radius wand the complex beam parameter q to be the
same as for the fundamental mode discussed above. The function H satisfies Hermite's
differential equation [MARG56]

d2H(u) dH(u)
du 2 - 2u~ + 2mH(u) = 0, (2.57)

where m is a positive integer. This is the defining equation for the Hermite polynomial
of order m, denoted Hm(u). Ho(u) = 1 and HI (u) = 2u; the remaining polynomials are
easily obtained from the recursion relation

Hn+I(U) = 2[uHn(u) - nHn-l(u)], (2.58)

and can also be found from direct series expansion or from the expression [MARG56]

2 d
n

( 2)Hn(u) = (_l)n e" - e-u •
dun

The Hermite polynomials through order 4 are:

Ho(u) = 1

Hitu) = 2u

H2(U) = 4u 2 - 2

H3(U) = 8u 3 - 12u

H4(U) = 16u4 - 48u 2 + 12.

(2.59)

(2.60)

(2.61)

With the same convention for normalization used earlier, we find the expression for the
one-dimensional Gaussian beam mode of order m to be

(
2 )0.25 [ 1 ]0.5 (-I2x )

Em(x, z) = - Hm --
n W x 2m m! W x

[

X
2

• j n X
2 j (2m + 1)4>ox ]

. exp - 2 - ) k: - -- + .
W x ARx 2

The variation of the beam radius, the radius of curvature, and the phase shift are the same
as for the fundamental mode (equations 2.26~), but we note that the phase shift is greater
for the higher order modes. The Eo mode is of course identical to the fundamental mode
in one dimension (equation 2.30).

In dealing with the two-dimensional case, the paraxial wave equation for u(x, y, z)
separates with the appropriate trial solution formed from the product of functions like those
of equation 2.61. We have the ability to deal with higher order modes having unequal beam
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waist radii and different beam waist locations. Normalizing to unit power flow results in
the expression for the mn Gauss-Hermite beam mode

(
1 )0.5 (-J2X

) (-J2Y )Emn(x, y, z) = 2m+n- l " H; -- H; --
rewxwy m.n. ui, wy

(2.62)

[
x2 y2 'k jttx2 j re y2 j (2m + l)(jJox j (2n + l)(jJOy]

. exp - 2 - 2 - ) z - -- - -- + + .
W x wy ARx ARy 2 2

The higher order modes in rectangular coordinates obey the orthogonality relationship

ji:«;«. y, z)E;q(x, y, z)dxdy =dm/jnq. (2.63)

Some Gauss-Hermite beams of low order are shown in Figure 2.10. The Gauss
Hermite beam mode Em (x) has m zero crossings in the interval -00 ::s x ::s 00. Thus, the
power distribution has m + 1 regions with local intensity maxima along the x axis, while
the Emn(x, y) beam mode in two dimensions has (m + l)(n + 1) "bright spots."

One special situation is that in which beams in x and y with equal beam waist radii are
located at the same value of z. In this case we obtain (taking ui, = wy == w, R, = R, == R,
and 4>ox = 4>Oy == 4>0)

(
I ) 0.5 ( -/2x ) ( -/2y )Emn(x, y, z) = 22m+n - l , , Hm -- H; --

tt u: m.n. w w
(2.64)

[
(x2 + y2) jre(x2 + y2) ]

·exp - w2 - jkz - AR + j(m +n + l)cPo .
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This expression can be useful if we have equal waist radii in the two coordinates, but the
beam of interest is not simply the fundamental Gaussian mode. For m = n = 0, we again
obtain the fundamental Gaussian beam mode with purely Gaussian distribution.

2.5 THE SIZE OF GAUSSIAN BEAM MODES

Although we carry out calculations primarily with the field distributions, we most often mea
sure the power distribution of a Gaussian beam. This convention is of practical importance
in determining the beam radius at a particular point along the beam's axis of propagation,
or in verifying the beam waist radius in an actual system. For a fundamental mode Gaus
sian, the fraction of power included within a circle of radius ro increases smoothly with
increasing ro as discussed in Section 2.2.1. For the higher order modes, the behavior is not
so simple, since it is evident from Section 2.4 that power is concentrated away from the
axis of propagation. Consequently, the beam radius w is not an accurate indication of the
transverse extent of higher order Gaussian beam modes.

It is convenient to have a good measure of the "size" of a Gaussian beam for arbitrary
mode order; this is also referred to as the "spot size." An appealing definition for the size
of the Gaussian beam pm mode in cylindrical coordinates is [PHIL83]

P;-pm = 2IIlpm(r, lfJ)r
2dS = 2IIr3drdlfJIEpm(r, lfJ)/2, (2.65)

where we employ the normalized form of the field distribution (equation 2.51) or normalize
by dividing by JJI pm (r, ({J)d S. Evaluation of this integral yields

Pr-pm = w[2p + m + 1]°·5, (2.66)

where w is the beam radius at the position of interest along the axis of propagation, and
Pr-pm, given by equation 2.66, is just equal to the beam radius for the fundamental mode
with p = m = O.

The analogous definition for the m mode in one dimension in a Cartesian coordinate
system is

P;-m = 2f IEm(x)1
2x

2dx =w; [m + ~r5, (2.67)

where we have adapted the discussion in [CART80] to conform to our notation. While it
might appear that these modifications give inconsistent results for the fundamental mode,
this is not really the case, since we need to consider a two-dimensional case in rectangular
geometry for comparison with the cylindrical case. For the n mode in the y direction, we
obtain

Py-n =w y [n + ~r5. (2.68)

The two-dimensional beam size is defined as P;y = p; + p;, which for a symmetric beam
with W x = wy = w, becomes

Pxy-mn = w[m + n + 1]°·5, (2.69)

and for the fundamental mode gives Pxy-OO = ui, in agreement with the result obtained
from equation 2.66. The size of the Gauss-Laguerre and Gauss-Hermite beam modes thus
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grows as the square root of the mode number for high order modes. This is in accord
with the picture that a higher order mode has power concentrated at a larger distance from
the axis of propagation, for a given w, than does the fundamental mode. It is particularly
important that high order beam modes are "effectively larger" than the fundamental mode
having the same beam radius when the fundamental mode is not a satisfactory description of
the propagating beam, and we want to avoid truncation of the beam. The guidelines given
in Section 2.2.2 apply specifically to the fundamental mode, and the focusing elements,
components, and apertures must be increased in size if the higher order modes are to be
accommodated without excessive truncation.

2.6 GAUSSIAN BEAM MEASUREMENTS

It is naturally of interest for the design engineer to be able to verify that a quasioptical
system that has been designed and constructed actually operates in a manner that can be
accurately described by the expected Gaussian beam parameters. This is important not
only to ensure overall high efficiency, but to be able to predict accurately the performance
of certain quasioptical components (discussed in more detail in Chapter 9), which depend
critically on the parameters of the Gaussian beam employed.

A variety of techniques for measuring power distribution in a quasioptical beam have
been developed. Work on optical fibers and Gaussian beams of small transverse dimensions
at optical frequencies has encouraged approaches that measure power transmitted through a
grating with regions of varying opacity; the fractional transmission is related to the relative
size of the beam radius and the grating period. It may be more convenient to measure the
maximum and minimum transmission through such a grating as it is scanned across the
beam than to determine the beam profile by scanning a pinhole or knife edge (cf. discussion
in [CHER92]).

However, at millimeter and submillimeter wavelengths, beam sizes are generally
large enough that beams can be effectively and accurately scanned with a small detector
(cf. [GOLD??]). This technique assumes the availability of a reasonably strong signal, as
is often provided by the local oscillator in a heterodyne radiometric system. Best results
are obtained by interposing a sheet of absorbing material to minimize reflections from the
measurement system.

An alternative for probing the beam profile is to employ a high sensitivity radiometric
system and to move a small piece of absorbing material transversely in the beam. If the
overall beam is terminated in a cooled load (e.g., at the temperature of liquid nitrogen),
the moving absorber can be at ambient temperature, which is an added convenience. To
obtain high spatial resolution, only a small fraction of the beam can be filled by the load
at the different temperature. Thus the signal produced is necessarily a small fraction of
the maximum that can be obtained for a given temperature difference and good sensitivity
is critical. If the beam is symmetric, the moving sample can be made into a strip filling
the beam in one dimension, without sacrificing spatial resolution. A half-plane can also
be used and the actual beam shape obtained by deconvolution; this approach can also be
utilized for asymmetric beams, although a more elaborate analysis of the data is necessary
to obtain the relevant beam parameters [BILG85].

Another good method, which is particularly effective for small systems, is to let the
beam propagate and measure the angular distribution of radiation at a distance z > > Zc.
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Then, following the discussion in Section 2.2.4, the beam waist radius can be determined.
Note that a precise measurement requires knowledge of the beam waist location, which
mayor may not be available. In practice, however, this technique works well to verify
the size of the beam waist as long as its location is reasonably well known. It is basically
the convenience of a measurement of angular power distribution (i.e., using an antenna
positioner system) that makes this approach more attractive than transverse beam scanning,
and the choice of which method to employ will largely depend on the details of the system
being measured and the equipment available.

Relatively little work has been done on measuring the phase distribution of Gaussian
beams; the usual assumption is that if the intensity distribution follows a smooth Gaussian,
the phase will be that of the expected spherical wave. On the other hand, "ripples" in the
transverse intensity distribution are generally indicative of the presence of multiple modes
with different phase distributions, which are symptomatic of truncation, misalignment,
or other problems. An interesting method for measurement of the phase distribution of
coherent optical beams described by [RUSC66] could be applied to quasioptical systems at
longer wavelengths. If the phase and amplitude of the far field pattern are measured (as is
possible with many antenna pattern measurement systems), then the amplitude and phase
of the radiating beam can be recovered. While the quadratic phase variation characterizing
the spherical wave front is difficult to distinguish from an error in location of the reference
plane, higher order phase variations can be measured with high reliability.

2.7 INVERSE FORMULAS FOR GAUSSIAN BEAM
PROPAGATION

In the discussion to this point it has been assumed that we know the size of the beam waist
radius and its location and that it is possible to calculate (using, e.g., equation 2.21) the beam
radius and radius of curvature at some specified position along the axis of propagation. We
can represent this calculation by {wo, zl ~ {w, R}. In practice we may know only the
size of a Gaussian beam, and the distance to its waist-this might come about, for example,
by measurement of the size of a beam and knowledge that it was produced by a feed horn
at a specified location. Or, we might be able to measure the beam radius and the radius
of curvature (if phase measurements can be carried out). In these cases, we need to have
"inverse" formulas, in the sense of working back to the beam waist, to allow us to determine
the unknown parameters of the beam.

The most elegant of these inverse formulas is obtained directly from the two different
definitions of the complex beam parameter (equations 2.29a and 2.29b). By taking the
inverse of either of these, rationalizing, and equating real and imaginary parts, we obtain
the transformation for {w, R} ~ {wo, z}; the resulting expressions are given in Table 2.3.
This is a special case, because the two pairs of parameters are related to the imaginary and
real parts of q and q -I. If we have other pairs of parameters, such as wand z or Wo and R,
we have to solve fourth-order equations, and obtain pairs of solutions. In the other cases it
is straightforward to invert the standard equations (2.26b and 2.26c) to obtain the desired
relationships.

The set of six pairs of known parameters (including the conventional one in which the
beam waist radius and location are known), together with the relevant equations to obtain
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TABLE 2.3 Formulasfor Determining GaussianBeam QuantitiesStarting with Different
Pairsof KnownParameters

Known
Parameter
Pairs

[ (A frS
R=z [I +(1f;:f]Wo z

W =Wo 1+ 1f:~

R w5 =~ [z (R - z)]O.5 w from Wo and z

w w~= f {I ± [1- (~)2rS} R from Wo and z

Wo W z= n;o [w2 - wJJO.5 R from Woand z

R [ [ elf w7rS
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unknown parameters, are given in Table 2.3. In usingthese, it is assumed that once we have
solved for the beam waist radius and its location (Le., once we know WQ and z), we can
use the standard equations to obtain other information desired about the Gaussian beam.
We note again that these formulas apply to the higher order as well as to the fundamental
Gaussian beam mode, but care must be taken in determining w from measurements of the
field distribution of a higher order mode.

2.8 THE PARAXIAL LIMIT AND IMPROVED SOLUTIONS
TO THE WAVE EQUATION

The preceding discussion in this chapter has been based on solutions to the paraxial wave
equation (equations 2.5-2.7). Since the paraxial wave equation is a satisfactory approx
imation to the complete wave equation only for reasonably well-collimated beams, it is
appropriate to ask how divergent a beam can be before the Gaussian beam mode solutions
cease to be acceptably accurate. For a highly divergent beam, the electric field distribution
at the beam waist is concentrated within a very small region, on the order of a wavelength
or less. In this situation, the approximation that variations will occur on a scale that is large
compared to a wavelength is unlikely to be satisfactory. In fact, a solution to the wave
equation cannot have transverse variations on such a small scale and still have an electric
field that is purely transverse to the axis of propagation. In addition, it is not possible to
have an electric field that is purely linearly polarized, as has been assumed to be the case in
the preceding discussion.

Thus, when we consider a beam waist that is on the order of a wavelength in size
or smaller, we find that the actual solution for the electric field has longitudinal and cross
polarized components. In addition, the variation of the beam size and its amplitude as
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a function of distance from the beam waist do not follow the basic Gaussian beam for
mulas developed above. This topic has received considerable attention in recent years.
Approximatesolutionsbased on a series expansionof the field in terms of a parameterpro
portional to wo/Ahavebeen developed, and recursionrelationsfound to allowcomputation
(cf. [VANN64], [LAX75], [AGAR79], [COUT81], [AGAR88]). These solutions include
a longitudinalcomponentas well as modifications to the transversedistribution.

Corrections for higher order beam modes have also been studied [TAKE85]. As
indicated in figures presented by [NEM090], if we force at the waist a solution that is a
fundamentalGaussiandistributiontransverseto the axis of propagation, the beam diverges
more rapidly than expected from the Gaussian beam mode equations, and the on-axis
amplitude decreases more rapidly in consequence. The phase variation is also affected.
[NEM090] defines four different regimes. For WO/A 2: 0.9 the paraxial approximation
itself is valid, while for 0.5 ::s wolA ::s 0.9 the paraxial and exact solutions differ, but the
first-order correction is effective. For 0.25 ::s wolA ::s 0.5, the first-order correction is
not sufficient, while for Wo/A < 0.25 the paraxial approximation completely fails and the
corrections are ineffective. Similar criteria have been derived by [MART93], based on a
plane waveexpansionof a propagating beam. They find that for wolA 2: 1.6corrections to
the paraxial approximation are negligible, but for wolA ::s 0.95 the paraxial approximation
introduces significant error.

ThecriterionwolA 2: 0.9 (whichis inreasonableagreementwithlimitsfixed inearlier
treatments,e.g., [VANN64]), isa veryusefulone fordefiningtherangeof applicabilityof the
paraxialapproximation. It correspondsto a valueof the far-field divergence angle00 ::s 0.35
rad or 20°. Thus (usingequation2.36 or Table2.1) approximately 990/0 of the power in the
fundamental modeGaussianbeam is within 30° of the axis of propagationfor this limiting
value of 00 . While, as suggested above, this is not a hard limit for the application of the
paraxial approximation, it representsa limit for using it with good confidence. Employing
the paraxial approximation for angles up to 45° will give essentially correct answers, but
there will inevitably be errors as we approach the upper limit of this range.

Unfortunately, the first-order corrections as given explicitly by [NEM090] are so
complexthat they havenot seen any significant use, and theyare unlikelyto be veryhelpful
in general design procedures. They could profitably be applied, however, in a specific
situation involving large angles once an initial but insufficiently accurate design had been
obtained by means of the paraxial approximation.

A differentapproachby [TUOV92] is basedon finding an improved"quasi-Gaussian"
solution, which is exact at the beam waist and does a betterjob of satisfying the full-wave
equation than do the Gaussian beam modes, which are solutions of the paraxial wave
equation. This improved solution has the (un-nonnalized) form in cylindricalcoordinates

Wo 1 [(rIF")
2

. . " .]
E(r, z) = -:;; F"2 exp - w2 - jkz - jkRt F - 1) + 14Jo , (2.70)

where F" = [1 + (r / R)2]O.5. This is obviously very similar to equation 2.25b, and in fact
for r < < R, wecan take F" = 1 in the amplitudeterm whilekeepingonly terms to second
order in the phase. This yields the standard fundamental Gaussian beam mode solution to
the paraxial waveequation. This solution is derivedand analyzedextensively in [FRIB92],
and it appears to be an improvement, except possibly in the region z ~ z-. It may be useful
for improvingthe Gaussianbeam analysis of systems with very small effectivewaist radii
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(2.71)

(e.g., feed horns having very small apertures). The transformation properties of such a
modified beam remain to be studied in detail.

2.9 ALTERNATIVE DERIVATION OF THE GAUSSIAN BEAM
PROPAGATION FORMULA

It is illuminating to consider the propagation of a Gaussian beam in the context of a diffrac
tion integral. With the assumption of small angles so that obliquity factors can be set to
unity, the familiar Huygens-Fresnel diffraction integral for the field produced by a planar
phase distribution and amplitude illumination function Eo can be written (cf. [SIEG86]
Section 16.2, pp. 630-637)

E (x', y' , z') = 1- exp( - j kz')
AZ'

If [- j k(X' - X)2+ (y' _ y)2]
Eo(x,y,O)exp 2z' dxdy.

We have assumed that the illuminated plane is defined by coordinates (x, y, z = 0), while
the observation plane is defined by (x', y', z'). Consider the incident illumination to be an
axially symmetric Gaussian beam with a planar phase front, Eo = exp[ -(x2 + y2)/w5]'
We can then separate the x and y integrals, with each providing an expression of the form
(ignoring the plane wave phase factor)

EAx', z') = (~, yo5! exp { _ [:~ + jk(X~z~ X)2]} dx , (2.72)

where the integral extends over the range -00 :::: x :::: 00. Completing the square and
taking advantage of the definite integrali: exp(-ax

2 + bx)dx = [~r5 exp (~) ; a > 0 (2.73)

(which turns out to be a very useful expression for analysis of Gaussian beam propagation),
we obtain the expression

" ( j )0.5 ( 2Jrw5Z' )0.5 [-k2x
l2

W5 - 2j kz,x
/2

]
Ex(x ,Z) == - 2 exp 2 (2.74)
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The real and imaginary parts of the exponential are suggestive, and after some manipulation,
we find that

(

'2 '2 )
(

Wo ) 0.5 - X j Jr X j 4>0
Ex(x', z') = -;;; exp 7 - ---;R - T ' (2.75)

together with the variation of w, R, and <Po given by equations 2.26b to 2.26d. Combining
the x and y integrals and the plane wave phase factor, we see that the propagation of
the fundamental mode Gaussian beam can be directly obtained from a diffraction integral
approach. The same is true of the higher order Gaussian beam modes, but this involves
considerably greater mathematical complexity.
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2.10 BIBLIOGRAPHIC NOTES
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Since almost every text on optics and optical engineering covers Gaussian beam propagation
at some level, it is impossible to give a complete list of these references. However, texts
which have been particularly useful to the author are [ARNA76], [MARC75], [SIEG86]
(Chapters 16 and 17, pp. 626-697), and [YARI71]. Some of the more comprehensive review
articles that cover fundamental and higher order Gaussian beam modes are [KOGE66] and
[MART89].

Diffraction theory is covered extensively in the texts [BORN65] and [SIEG86], as
well as many named in the other references on "Gaussian beams.

With the idea of being helpful to the reader, I point out that the discussions of higher
order Gaussian beam modes, in particular, seem to be fraught with typographical errors. In
equation (64) of [SIEG86] the factor (1 + 80m) should be omitted, and the last exponential
should be exp(jmcp). Equation 3.3 of [MART89] should have the term (-R2)' rather than
(- Ri, and the terms in equation 3.4 should have an additional factor n !. In equation 3.11
of this reference, the delta function should be 80m' The present work is hopefully free of
these errors, but almost inevitably will contain others. The author would be grateful to any
reader identifying such problems and bringing them to his attention.

Gaussian beam propagation is also discussed extensively in some of the references
given in Chapter 1, particularly those by [GOUB68] and [GOUB69]. Other useful references
include the articles [CHU66], [KOGE65], [KOGE66], [MART78], and [MART89]. The
last reference also includes an interesting discussion of the paraxial limit.

Depictions of the higher order Gaussian beam modes can be found in a number of
places, with a relatively complete presentation being given by [MOOS91]. The behavior
of higher order modes with p = 0 is discussed by [PAXT84].

A variety of alternative approaches have been developed for analysis ofGaussian beam
propagation. These include the use of a complex argument for the beam modes ([SIEG73],
[SIEG86]), representation of a Gaussian beam at a specified distance from its waist as point
on a complex circle diagram developed by [COLL64] and by [DESC64], and geometri
cal constructions to describe the propagation ([LAUR67]). Gaussian beams can also be
considered as complex rays, as described by [DESC71], [PRAT?7], and [ARNA85]. The
availability of computers makes it practical to perform numerical analyses, such as Fourier
transformations and expansion in plane waves ([SIEG86], Section 16.7, pp. 656-662) in
situations where Gaussian beam propagation is not effective. These alternative methods of
considering Gaussian beam propagation remain valuable for the increased understanding
that they provide.

The spot size of Gaussian beams is specifically discussed in articles [BRID75],
[CART80], [CART82], and [PHIL83].

Gaussian beams in anisotropic media are discussed in [ERME70], and in certain
conditions solutions similar to those discussed here can be obtained. In addition to the
references given in Section 2.6, [CART72] discusses properties of Gaussian beams with
elliptical cross sections.

A technique for recovering the complex Gaussian beam mode coefficients in a prop
agating beam from intensity measurements alone is presented by [ISAA93].

Alternative derivations of Gaussian beam propagation formulas are given in the texts
by Siegman and by Marcuse, already cited, and in [WILL73].


