Stepping Stone Method of Optimality Test

Once, we get the **basic feasible solution** for a transportation problem, the next duty is to test whether the solution we got is an **optimal solution** or not?

1. Steps to test unused squares;

2. Select an unused square,

3. Allocate + (1) unit to **unused square** and locate - (1) and + (1) alternatively to corners of the selected closed path.

4. Calculate the improvement index .

5. If improvement index is **negative** allocate as **much** as you can to that unused square.

Repeat the allocation till the improvement index is ≥ 0 for all unused squares.

Retail Agency]	l	2		3		4		5	
Factories										
	50	1		9		13		36		51
1		-1	+1							
	50	24	50	12		16		20		1
2		+1	-1							
		14	10	33	50	1	50	23	40	26
3										

Improvement index (1 - 2) = 1*9 - 1*1 + 1*24 - 1*12 = +20, this means if we

allocate (1-2) +1 unit, then the transport cost will increase by +20.

Retail Agency	1	2	3	4	5
Factories					

١

	50	1		9		13		36		51
1	-	-1			+1					
	50	24	50	12		16		20		1
2	+	-1	-1							
		14	10	33	50	1	50	23	40	26
3			+1		-1					

Improvement index $(1 - 3) = 1 \times 13 - 1 \times 1 + 1 \times 24 - 1 \times 12 + 1 \times 33 - 1 \times 1 = +56$, this means

if we allocate (1-3) + 1 unit, then the transport cost will increase by +56.

Retail Agency	1	-	2	2	3		4		5	
Factories										
	50	1		9		13		36		51
1		-1					+1			
	50	24	50	12		16		20		1
2		+1	-1							
		14	10	33	50	1	50	23	40	26
3			+1				-1			

Improvement index (1-4) = 1*13-1*1+1*24-1*12+1*33-1*23 = +34, this means if we allocate (1-4) +1 unit, then the transport cost will increase by +24. And so on ...

Improvement index (1-5) = 1*51-1*1+1*24-1*12+1*33-1*26 = +73, this means if we allocate (1-5) +1 unit, then the transport cost will increase by +73. Improvemen]t index (2-3) = 1*16-1*12+1*33-1*1 = +36, this means if we

allocate (2-3) + 1 unit, then the transport cost will increase by +36.

Improvement index (2-4) = 1*20-1*12+1*33-1*23=+18, this means if we allocate (2-4) + 1 unit, then the transport cost will increase by +18.

Improvement index (2-5) = 1*1-1*12+1*33-1*26= -4, this means if we allocate (2-5) + 1 unit, then the transport cost will **decrease by -4**.

Since there is a decrease in the cost, we will allocate as much as we can to (2-5). To further improve the current solution, select the "smallest" number found in the path (2-5, 2-2, 3-2, 3-5) containing minus (-) signs. This number is added to all cells on the closed path with plus (+) signs, and subtracted from all cells on the path with minus (-) signs.

Retail Agency	1		2		3		4		5	Capacity
Factories										
		1		9		13		36	51	50
1	50									
		24	1	2		16		20	1	
2	50		10						40	100
		14	3	33		1		23	26	
3			50		50		50			150
Requirement	100		60		50		50		40	

Z = 50 * 1 + 50 * 24 + 10 * 12 + 50 * 33 + 50 * 1 + 50 * 23 + 40 * 1 = 4260.

1	2	3	4	5
1	9	13	36	51
50				

50	24	10	12	1	5	20	1
	-1	+1					40
	14	50	33	1		23	26
	+1	-1		50	4	50	

Improvement index $(3 - 1) = 1*14 \cdot 1*33 + 1*12 \cdot 1*24 = -31$, this means if we allocate (3 - 1) + 1 unit, then the transport cost will **decrease by -31**.

Since there is a decrease in the cost, so,

Retail Agency	1		2		3		4		5		Capacity
Factories											
1		1		9		13		36	5	1	50
1	50										
		24		12		16		20	1		
2			60						40		100
		14		33		1		23	2	6	
3	50				50		50				150
Requirement	100		60		50		50		40		

Z=50*1+50*14+60*12+50*1+50*23+40*1=2710.

We will check the Improvement index in each cell again:

(1-2)	Not possible	
(1-3)	1*13-1*1+1*14-1*1	=+25
(1-4)	1*36-1*1+1*14-1*23	=+26
(1-5)	Not possible	

(2-1)	Not possible
(2-3)	Not possible
(2-4)	Not possible
(3-2)	Not possible
(3-5)	Not possible

In the table above, no more negative improvement index, so the solution

$\mathbf{Z} = \mathbf{2710}$ is optimal.

Example : According to the following table, Find the feasible solution by three methods (NWCM, LCM and VAM), then find the optimal solution.

		Albuquerque	Boston	Cleveland	Capacity
	Des Moines	5	4	3	100
From	Evansville	8	4	3	300
	Fort Lauderdale	9	7	5	300
	Demand	300	200	200	700

Minimize $\mathbf{Z} = 5x_{11} + 4x_{12} + 3x_{13} + 8x_{21} + 4x_{22} + 3x_{23} + 9x_{31} + 7x_{32} + 5x_{33}$

Constraints:	For Supply nodes; $x_{11} + x_{12} + x_{13} \le 100$ $x_{21} + x_{22} + x_{23} \le 300$ $x_{31} + x_{32} + x_{33} \le 300$	Supply cannot be bigger than capacity.
	For Demand nodes; $x_{11} + x_{21} + x_{31} \ge 300$ $x_{12} + x_{22} + x_{32} \ge 200$ $x_{13} + x_{23} + x_{33} \ge 200$	Demand cann ot be less than the required.
	all x _{ii} and x _{ii} ≥0	
G 1 (*		

Solution:

1) Initial Solution with NWCM

	Albuquerque	Boston	Cleveland	Capacity
--	-------------	--------	-----------	----------

То

Des Moines	5	4	3	100
Evansville	8	4	3	300
Fort Lauderdale	9	7	5	300
Demand	300	200	200	700

	Albuquerque	Boston	Cleveland	Capacity
Des Moines	(100) 5	4	3	100
Evansville	(<u>200</u>)	(100) 4	3	300
Fort Lauderdale	9	(100) 4	(200) 5	300
Demand	300	200	200	700

Z=100×5+200×8+100×4+100×7+200×5=500+1600+400+700+1000=**4200** \$

2) Initial Solution with LCM

	Albuquerque	Boston	Cleveland	Capacity
Des Moines	5	4		100
Evansville	8	(200) 4	(100) 3	300
Fort Lauderdale	(300) 9	7	5	300
Demand	300	200	200	700

Z=300×9+200×4+100×3+100×3=2700+800+300+300=**4100** \$

3) Initial Solution with VAM

	3	0	0		_
	Albuquerque	Boston	Cleveland	Capacity	
Des Moines	5	4	3	100	1
Evansville	8	4	3	300	1
Fort Lauderdale	9	7	5	300	2
Demand	300	200	200	700	

	<i>3</i> 1	0	0		_
	Albuquerque	Boston	Cleveland	Capacity	
Des Moines	(100) 5	4	3	100	1
Evansville	8	4	3	300	1
Fort Lauderdale	9	7	5	300	2
Demand	300	200	200	700	

	1	Q′3	Ø 2		-
	Albuquerque	Boston	Cleveland	Capacity	
Des Moines	(100) 5	4 X	Х 3 Х	100	12 0
Evansville	8	(200) 4	3	300	1
Fort Lauderdale	9	7 X	5	300	2
Demand	300	200	200	700	

	γo	<i>3</i> ∕0	20		_
	Albuquerque	Boston	Cleveland	Capacity	
Des Moines	(100) 5	× 4	X 3	100	0
Evansville	X 8	(200) 4	(100) 3	300	0 5
Fort Lauderdale	9	X 7	5	300	4
Demand	300	200	200	700	

	0	0	0		_
	Albuquerque	Boston	Cleveland	Capacity	
Des Moines	(100) 5	× 4	X 3	100	0
Evansville	X 8	(200) 4	(<u>100</u>) 3	300	0
Fort Lauderdale	(200) 9	X 7	(100) 5	300] o
Demand	300	200	200	700	

Z=100×5+200×4+100×3+200×9+100×5=500+800+300+1800+500=**3900** \$

Stepping Stone Method of Optimality Test

	Albuque	rque	Bosto	n	Clevela	and
Des Moines	100 - 1	5	_+ 1	4		3
Evansville	200 +1	8	100 - 1	4		3
Fort Lauderdale		9	100	7	200	5

Improvement index= I_{De} =+4-5+8-4=+3, this means, if we allocate to Des Moines-Boston +1 unit the transport cost will increase by +3.

	Albuquero	lue	Bosto	n	Clevela	and
Des Moines	100 - 1	5		4	- +1	3
Evansville	200 + 1	8	100 1	4		3
Fort Lauderdale		9	100 +1	7	200 - 1	5

Improvement index=I_{pc}\!\!=\!\!+3\!\!-\!5\!\!+\!7\!\!-\!4\!\!+\!8\!\!-\!5\!\!=\!\!+4 , this means, if we allocate to Des Moines-Cleveland +1 unit the transport cost will increase by +4.

Improvement index=I ₈₀ =+3-5+7-4=+1 , this
means, if we allocate to Evansville - Cleveland +1
unit the transport cost will increase by +1.

Improvement index=I_{FA}=+9-8+4-7=-2 , this means, if we allocate to Fort Lauderdale - Albuquerque +1 unit the transport cost will decrease by -2.

	Albuquerq	Bosto	n	Cleveland		
Des Moines	100	5		4		3
Evansville	200	8	100 - 1	4	+1	3
Fort		9	100 + 1	7	200 - 1	5

	Albuquerque		Bosto	n	Cleveland	
Des Moines	100	5		4		3
Evansville	200 - 1 ;	8	100 - + 1	4		3
Fort Lauderdale	+1	9	100 - 1	7	200	5

Since	there is	a decre	ase in th	ne cost,	wev	will	alloca	ate as	much	as v	ve c	an	to
Fort]	Lauder	dale –	Albuqu	erque.	The	amo	ount	is th	e min i	imun	n o	ft	he
numb	ers that	we are	assigni	ng -(1)	in the	e cyc	cle.						

	Albuquerque		Bosto	Boston		and	Capacity
Des Moines	100	5		4		3	100
Evansville	100	8	200	4		3	300
Fort Lauderdale	+100	9	0	7	200	5	300
Demand	300		200		200		700

Z=100×5 + 100×8+200×4+100×9+200×5=500+800+800+900+1000=**4000** \$

The solution obtained may or may not be optimal. To check we return to first step to check the unused squares,

D to B	I _{DB}	+DB-DA+AE-EB	+4-5+8-4	+3
D to C	I _{DC}	+DC-DA+FA-FC	+3-5+9-5	+2
E to C	I _{EC}	+EC-EA+FA-FC	+3-8+9-5	-1
F to B	I _{FB}	+FB-EB+EA-FA	+7-4+8-9	+2

An improvement can be done by allocating to **EC**, since the minimum number in the square is 100; we allocate 100 to **EC** square.

	Albuquerque		Boston		Cleveland		Capacity
Des Moines	100	5		4		3	100
Evansville	0	8	200	4	+100	3	300
Fort Lauderdale	+200	9	0	7	100	5	300
Demand	300		200		200		700

Z=100×5 + 200×9+200×4+100×3+100×5=500+1800+800+300+500=**3900** \$

We will check the Improvement index in each cell again.

D to B	I _{DB}	+DB-DA+FA-FC+EC-EB	+4-5+9-5+3-4	+2
D to C	I _{DC}	+DC-DA+FA-FC	+3-5+9-5	+2
E to A	I _{EC}	+EA-FA+FC-EC	+8-9+5-3	+1
F to B	I _{FB}	+FB-EB+EC-FC	+7-4+3-5	+1

In this table, no more negative improvement index, so the solution is **optimal**. **Exercise:**

1) A company has three factories X, Y, and Z and three warehouses A, B, and C. It is required to schedule factory production and shipments from factories to warehouses in such a manner so as to minimize total cost of shipment and production. Unit variable manufacturing cost (UVMC) and factory capacities and warehouse requirements are given below:

From / To	А		В	}	C		Capacity
		10		4		11	70
Х							70
		12		5		8	50
Y							50
		9		7		6	20
Z							30
Demand	40		5	0	6	0	150

a) Load the table with **North-west method**.

b) Load the table with **least cost method**.

- c) Load the table with Vogel's approximation method, (VAM).
- d) Solve the question by **stepping stone algorithm**.

2) The demand and capacity are given

From / To	Sara	jevo	Travnik		Bi	hac	Capacity
Mostar		5		7		15	120
Zenica		4		2		8	200
Tuzla		6		3		10	150
Demand	21	.0	10	60	1	00	470

- a) Load the table with **North-west method**.
- b) Load the table with **least cost method**.
- c) Load the table with **Vogel's approximation method**, (VAM).
- d) Solve the question by **stepping stone algorithm**.

	1		1		2		
	5		7		15	120	2
						120	L
	4		2		8	200	2
						200	2
	6		3		10	150	3
						130	5
21	210		160		00	470	

1 2	1 5	2	
-----	-----	---	--

	5		7		15	120 2 40
	120		Х		Х	120 <mark>2</mark> 10
	4		2		8	200 2 4
	90		10		100	200 2 4
	6		3		10	150 2
	Х		150		Х	150 <mark>3</mark>
210		160		100		470

Z=120*5+90*4+10*2+100*8+150*3=2230

	5		7	15	120
120	-1	+1			120
	4		2	8	200
90	+1	-1	10	100	200
	6		3	10	150
		150			150
210		160		100	470

$$(1,2) = 1*7-1*5+1*4-1*2 = +4$$

$$(1,3) = 15-5+4-8 = +6$$

(3,1) = 6-3+2-4 = +1

(3,3) = 10-8+2-3 = +1

So, the optimal solution: Z=2230.