A ¹H NMR Spectrum

An NMR spectrum plots the intensity of a signal against its chemical shift measured in parts per million (ppm). The common scale of chemical shifts is called the δ (delta) scale. The proton NMR spectrum of *tert*-butyl methyl ether [CH₃OC(CH₃)₃] illustrates several important features:

tert-Butyl methyl ether (MTBE) is the high-octane gasoline additive that has contaminated the water supply in some areas (Section 3.4).

> (CH₃)₄Si tetramethylsilane TMS

- NMR absorptions generally appear as sharp signals. The ¹H NMR spectrum of CH₃OC(CH₃)₃ consists of two signals: a tall peak at 1.2 ppm due to the (CH₃)₃C group, and a smaller peak at 3.2 ppm due to the CH₃O group.
- Increasing chemical shift is plotted from *right to left*. Most protons absorb somewhere from 0–12 ppm.
- The terms upfield and downfield describe the relative location of signals. Upfield means to the *right*. The (CH₃)₃C peak is upfield from the CH₃O peak. Downfield means to the *left*. The CH₃O peak is downfield from the (CH₃)₃C peak.

NMR absorptions are measured relative to the position of a reference signal at 0 ppm on the δ scale due to tetramethylsilane (TMS). TMS is a volatile and inert compound that gives a single peak upfield from other typical NMR absorptions.

Although chemical shifts are measured relative to the TMS signal at 0 ppm, this reference is often not plotted on a spectrum.

The positive direction of the δ scale is *downfield* from TMS. A very small number of absorptions occur upfield from the TMS signal, which is defined as the negative direction of the δ scale.

The chemical shift on the *x* axis gives the position of an NMR signal, measured in ppm, according to the following equation:

A chemical shift gives absorptions as a fraction of the NMR operating frequency, making it independent of the spectrometer used to record a spectrum. Because the frequency of the radiation required for resonance is proportional to the strength of the applied magnetic field, B_0 , reporting NMR absorptions in frequency is meaningless unless the value of B_0 is also reported. By reporting the absorption as a fraction of the NMR operating frequency, though, we get units—ppm that are independent of the spectrometer.

Sample Problem

Calculate the chemical shift of an absorption that occurs at 1500 Hz downfield from TMS using a 300 MHz NMR spectrometer.

Solution

Use the equation that defines the chemical shift in ppm:

chemical shift =

1500 Hz downfield from TMS

= 5 ppm

300 MHz operating frequency

¹H NMR: Number of Signals

How many ¹H NMR signals does a compound exhibit? The number of NMR signals *equals* the number of different types of protons in a compound.

General Principles

Any CH₃ group is different from any CH₂ group, which

is different from any CH

 Protons in different environments give different NMR signals. Equivalent protons give the same NMR signal.

In many compounds, deciding whether two protons are in identical or different environments is intuitive.

group in a molecule. Two CH_3 groups may be identical (as in CH_3OCH_3) or different (as in $CH_3OCH_2CH_3$), depending on what each CH_3 group is bonded to.

2 types of H's	
NMR signals	

- 3 types of H's 3 NMR signals
- CH₃OCH₃: Each CH₃ group is bonded to the same group ($-OCH_3$), making both CH₃ groups equivalent.
- CH₃CH₂CI: The protons of the CH³ group are different from those of the CH₂ group.

• $CH_3OCH_2CH_3$: The protons of the CH_2 group are different from those in each CH_3 group. The two CH_3 groups are also different from each other; one CH_3 group is bonded to $-OCH_2CH_3$ and the other is bonded to $-CH_2OCH_3$. In some cases, it is less obvious by inspection if two protons are equivalent or different. To rigorously determine whether two protons are in identical environments (and therefore give rise to one NMR signal), replace each H atom in question by another atom Z (for example, Z = CI). If substitution by Z yields the same compound or enantiomers, the two protons are equivalent, as shown in following Sample Problem

How many different kinds of H atoms does CH3CH2CH2CH2CH2CH3 contain?

Solution

In comparing two H atoms, replace each H by Z (for example, Z = CI), and examine the substitution products that result. The two CH₃ groups are identical because substitution of one H by CI gives CH₃CH₂CH₂CH₂CH₂CH₂CI (1-chloropentane). There are two different types of CH₂ groups, because substitution of one H by CI gives two different products:

Thus, CH₃CH₂CH₂CH₂CH₃ has three different types of protons and gives three NMR signals.

Determining Equivalent Protons in Alkenes and Cycloalkanes:

To determine equivalent protons in cycloalkanes and alkenes that have restricted bond rotation, always draw in all bonds to hydrogen.

Draw
$$H H H H$$
 NOT \square CI H NOT CICH=CH₂

Then, in comparing two H atoms on a ring or double bond, **two protons are equivalent only if they are cis (or trans) to the same groups,** as illustrated with 1,1-dichloroethylene, 1-bromo-1-chloroethylene, and chloroethylene.

- **1,1-Dichloroethylene:** The two H atoms on the C=C are both cis to a Cl atom. Thus, both H atoms are equivalent.
- 1-Bromo-1-chloroethylene: Ha is cis to a Cl atom and Hb is cis to a Br atom. Thus, Ha and

Hb are different, giving rise to two NMR signals.

• **Chloroethylene:** Ha is bonded to the carbon with the Cl atom, making it different from Hb and Hc. Of the remaining two H atoms, Hb is cis to a Cl atom and Hc is cis to a H atom, making them different. All three H atoms in this compound are different.

Proton equivalency in cycloalkanes can be determined similarly.

• Cyclopropane: All H atoms are equivalent, so there is only one NMR signal.

• Chlorocyclopropane: There are now three kinds of H atoms: Ha is bonded to a carbon bonded to a Cl; both Hb protons are cis to the Cl whereas both Hc protons are cis to another H.

Enantiotopic and Diastereotopic Protons

Let's look more closely at the protons of a single *sp*³ hybridized CH₂ group to determine whether these two protons are always equivalent to *each other*. Two examples illustrate different outcomes.

CH₃CH₂Br has two different types of protons—those of the CH₃ group and those of the CH₂ group—meaning that the two H atoms of the CH₂ group are *equivalent to each other*. To confirm this fact, we replace each H of the CH₂ group by an atom Z and examine the products of substitution. In this case, substitution of each H by Z creates a new stereogenic center, forming two products that are **enantiomers**.

 When substitution of two H atoms by Z forms enantiomers, the two H atoms are equivalent and give a single NMR signal. These two H atoms are called *enantiotopic* protons. In contrast, the two H atoms of the CH_2 group in (2*R*)-2-chlorobutane, which contains one stereogenic center, are *not* equivalent to each other. Substitution of each H by Z forms two diastereomers, and thus, these two H atoms give *different* NMR signals.

 When substitution of two H atoms by Z forms diastereomers, the two H atoms are not equivalent, and give two NMR signals. These two H atoms are called *diastereotopic* protons.

¹H NMR: Position of Signals

Shielding and Deshielding Effects

To understand how the electronic environment around a nucleus affects its chemical shift, recall that in a magnetic field, an electron creates a small magnetic field that opposes the applied magnetic field, B_0 . Electrons are said to *shield* the nucleus from B_0 .

In the vicinity of the nucleus, therefore, the magnetic field generated by the circulating electron *decreases* the external magnetic field that the proton "feels." Because the proton experiences a lower magnetic field strength, it needs a lower frequency to achieve resonance. Lower frequency is to the right in an NMR spectrum, toward lower chemical shift, so shielding shifts an absorption *upfield*,

a. Shielding effects

- · An electron shields the nucleus.
- The absorption shifts upfield.

- increases, the nucleus feels a smaller resultant magnetic field, so a lower frequency is needed to achieve resonance.
- · The absorption shifts upfield.

· Decreased electron density deshields a nucleus.

larger resultant magnetic field, so a higher

frequency is needed to achieve resonance.

The absorption shifts downfield.

· The absorption shifts downfield.

Organic Chemistry, J. G. Smith, 3rd Ed.

What happens if the electron density around a nucleus is *decreased*, instead? For example, how do the chemical shifts of the protons in CH₄ and CH₃Cl compare?

The less shielded the nucleus becomes, the more of the applied magnetic field (B_0) it feels. This *deshielded* nucleus experiences a higher magnetic field strength, so it needs a higher frequency to achieve resonance. Higher frequency is to the *left* in an NMR spectrum, toward higher chemical shift, so deshielding shifts an absorption downfield,

. The electronegative Cl atom withdraws electron density from the carbon and hydrogen atoms in CH₃Cl, thus deshielding them relative to those in CH₄.

· Protons near electronegative atoms are deshielded, so they absorb downfield.

These electron density arguments explain the relative position of NMR signals in many compounds.

- $\begin{array}{c} \mathsf{CH}_3\mathsf{CH}_2\mathsf{CI} \\ \uparrow \\ \mathsf{H}_a \\ \mathsf{H}_b \end{array} \qquad \bullet \quad \text{The } \mathsf{H}_b \text{ protons are deshielded because they are closer to the electronegative } \\ \mathsf{CI atom, so they absorb downfield from } \mathsf{H}_a. \end{array}$
- BrCH₂CH₂F † † H_a H_b

CICH₂CHCl₂

∱ ↑ H_a H_b

- Because F is more electronegative than Br, the H_b protons are more deshielded than the H_a protons and absorb farther downfield.
- The larger number of electronegative Cl atoms (two versus one) deshields H_b more than H_a, so it absorbs downfield from H_a.

Which of the underlined protons in each pair absorbs farther downfield: (a) $CH_3CH_2CH_3$ or CH_3OCH_3 ; (b) CH_3OCH_3 or CH_3SCH_3 ?

Solution

- a. The CH₃ group in CH₃OCH₃ is deshielded by the electronegative O atom. Deshielding shifts the absorption downfield.
- b. Because oxygen is more electronegative than sulfur, the CH₃ group in CH₃OCH₃ is more deshielded and absorbs downfield.

Chemical Shift Values

Not only is the *relative* position of NMR absorptions predictable, but it is also possible to predict the approximate chemical shift value for a given type of proton.

This Table illustrates that absorptions for a given type of C – H bond occur in a narrow range of chemical shift values, usually 1–2 ppm. For example, all sp3hybridized C – H bonds in alkanes and cycloalkanes absorb between 0.9 and 2.0 ppm. By contrast, absorptions due to N – H and

O– H protons can occur over a broader range. For example, the OH proton of an alcohol is found anywhere in the 1– 5 ppm range. The position of these absorptions is affected by the extent of hydrogen bonding, making it more variable.

The chemical shift of a particular type of C - H bond is also affected by the number of R groups bonded to the carbon atom.

Type of proton	Chemical shift (ppm)	Type of proton	Chemical shift (ppm)		
CH sp³.✓	0.9–2	C=C sp ²	4.5–6		
• RCH ₃ • R ₂ CH ₂ • R ₃ CH	~0.9 ~1.3 ~1.7		6.5–8		
Z C-C-H Z = C, O, N	1.5–2.5	R H	9–10		
—C≡C−H	~2.5	R ^C OH	10–12		
sp^{3} z $Z = N, O, X$	2.5–4	RO—H or R—N—H	1–5		
Protons in a given environment absorb in a predictable region in an NMR spectrum.					

The Chemical Shift of Protons on *sp*² and *sp* Hybridized Carbons

The chemical shift of protons bonded to benzene rings, C-C double bonds, and C-C triple bonds merits additional comment.

Each of these functional groups contains π bonds with loosely held π electrons. When placed in a magnetic field, these π electrons move in a circular path, inducing a new magnetic field. How this induced magnetic field affects the chemical shift of a proton depends on the direction of the induced field *in the vicinity of the absorbing proton*.

Protons on Benzene Rings

In a magnetic field, the six π electrons in benzene circulate around the ring, creating a ring current. The magnetic field induced by these moving electrons reinforces the applied magnetic field in the vicinity of the protons. The protons thus feel a stronger magnetic field and a higher frequency is needed for resonance, so the protons are deshielded and the absorption is *downfield*.

Protons on Carbon–Carbon Double Bonds

A similar phenomenon occurs with protons on carbon-carbon double bonds. In a magnetic field, the loosely held π electrons create a magnetic field that reinforces the applied field in the vicinity of the protons. Because the protons now feel a stronger magnetic field, they require a higher frequency for resonance. The protons are deshielded and the absorption is *downfield*.

Protons on Carbon–Carbon Triple Bonds

In a magnetic field, the π electrons of a carbon–carbon triple bond are induced to circulate, but in this case the induced magnetic field *opposes* the applied magnetic field (B_0). The proton thus feels a weaker magnetic field, so a lower frequency is needed for resonance. The nucleus is shielded and the absorption is *upfield*.

Organic Chemistry, J. G. Smith, 3rd Ed.

Proton type	Effect	Chemical shift (ppm)
— н	highly deshielded	6.5–8
C=C	deshielded	4.5–6
—C≡C—H	shielded	~2.5

Effect of π Electrons on Chemical Shift Values

Regions in the ¹H NMR spectrum

- · Shielded protons absorb at lower chemical shift (to the right).
- · Deshielded protons absorb at higher chemical shift (to the left).
- · Note: The drawn chemical shift scale is not linear.

¹H NMR: Intensity of Signals

The relative intensity of ¹H NMR signals also provides information about a compound's structure.

• The area under an NMR signal is proportional to the number of absorbing protons.

For example, in the ¹H NMR spectrum of $CH_3OC(CH_3)_3$, the ratio of the area under the downfield peak (due to the CH_3O- group) to the upfield peak [due to the $-C(CH_3)_3$ group] is 1:3. An NMR spectrometer automatically integrates the area under the peaks, and prints out a stepped curve (an integral) on the spectrum. The height of each step is proportional to the area under the peak, which is in turn proportional to the number of absorbing protons.

Integrals can be manually measured, but modern NMR spectrometers automatically calculate and plot the value of each integral in arbitrary units. If the heights of two integrals are 20 units and 60 units, the ratio of absorbing protons is 20:60, or 1:3, or 2:6, or 3:9, and so forth. This tells the *ratio*, not the absolute number of protons. Integration ratios are approximate, and often values must be rounded to the nearest whole number.

HOW TO Determine the Number of Protons Giving Rise to an NMR Signal Example A compound of molecular formula C₉H₁₀O₂ gives the following integrated ¹H NMR spectrum. How many protons give rise to each signal?

- Step [1] Determine the number of integration units per proton by dividing the total number of integration units by the total number of protons.
 - Total number of integration units: 54 + 23 + 33 = 110 units
 - Total number of protons = 10
 - Divide: 110 units/10 protons = 11 units per proton

Step [2] Determine the number of protons giving rise to each signal.

 To determine the number of H atoms giving rise to each signal, divide each integration value by the answer of Step [1] and round to the nearest whole number.

 Signal [A]:
 Signal [B]:
 Signal [C]:

 Anewer:
 $\frac{54}{11}$ = 4.9
 \approx 5 H
 $\frac{23}{11}$ = 2.1
 \approx 2 H
 $\frac{33}{11}$ = 3 H

¹H NMR: Spin–Spin Splitting

The ¹H NMR spectra you have seen up to this point have been limited to one or more single absorptions called **singlets.** In the ¹H NMR spectrum of BrCH₂CHBr₂, however, the two signals for the two different kinds of protons are each split into more than one peak. The splitting patterns, the result of **spin-spin splitting**, can be used to determine how many protons reside on the carbon atoms near the absorbing proton.

- The CH₂ signal appears as two peaks, called a *doublet*. The relative area under the peaks of a doublet is 1:1.
- The CH signal appears as three peaks, called a *triplet*. The relative area under the peaks of a triplet is 1:2:1.

Spin-spin splitting occurs only between nonequivalent protons on the same carbon or adjacent carbons. To illustrate how spin-spin splitting arises, we'll examine nonequivalent protons on adjacent carbons, the more common example. Spin-spin splitting arises because protons are little magnets that can be aligned with or against an applied magnetic field, and this affects the magnetic field that a nearby proton feels.

To understand spin–spin splitting, we must distinguish between the absorbing protons that give rise to an NMR signal, and the adjacent protons that cause the signal to split. The number of adjacent protons determines the observed splitting pattern.

Organic Chemistry, J. G. Smith, 3rd Ed.

Splitting: How a Doublet Arises

First, let's examine how the doublet due to the CH₂ group in BrCH₂CHBr₂ arises. The CH₂ group contains the absorbing protons and the CH group contains the adjacent proton that causes the splitting.

When placed in an applied magnetic field (B_0), the adjacent proton (CHBr₂) can be aligned with (\uparrow) or against (\downarrow) B_0 . As a result, the absorbing protons (CH₂Br) feel two slightly different magnetic fields—one slightly larger than B_0 and one slightly smaller than B_0 . Because the absorbing protons feel two different magnetic fields, they absorb at two different frequencies in the NMR spectrum, thus splitting

a single absorption into a doublet.

Keep in mind the difference between an NMR signal and an NMR peak. An NMR signal is the entire absorption due to a particular kind of proton. NMR peaks are contained within a signal. A doublet constitutes one signal that is split into two peaks.

One adjacent proton splits an NMR signal into a doublet.

The two peaks of a doublet are approximately equal in area. The area under both peaks—the entire NMR signal—is due to both protons of the CH₂ group of BrCH₂CHBr₂.

The frequency difference (measured in Hz) between the two peaks of the doublet is called the **coupling constant**, denoted by *J*. Coupling constants are usually in the range of 0–18 Hz, and are independent of the strength of the applied magnetic field B_0 .

coupling constant, J, in Hz

Splitting: How a Triplet Arises

Now let's examine how the triplet due to the CH group in $BrCH_2CHBr_2$ arises. The CH group contains the absorbing proton and the CH₂ group contains the adjacent protons (H_a and H_b) that cause the splitting.

When placed in an applied magnetic field (B_0), the adjacent protons H_a and H_b can each be aligned with (\uparrow) or against (\downarrow) B_0 . As a result, the absorbing proton feels three slightly different magnetic fields—one slightly larger than B_0 , one slightly smaller than B_0 , and one the same strength as B_0 .

Because the absorbing proton feels three different magnetic fields, it absorbs at three different frequencies in the NMR spectrum, thus splitting a single absorption into a triplet. Because there are two different ways to align one proton with B_0 and one proton against B_0 —that is, $\uparrow_a \downarrow_b$ and $\downarrow_a \uparrow_b$ —the middle peak of the triplet is twice as intense as the two outer peaks, making the ratio of the areas under the three peaks 1:2:1.

Two adjacent protons split an NMR signal into a triplet.

When two protons split each other's NMR signals, they are said to be *coupled*. In BrCH₂CHBr₂, the CH proton is coupled to the CH₂ protons. The spacing between peaks in a split NMR signal, measured by the J value, is *equal* for coupled protons.

Splitting: The Rules and Examples

Three general rules describe the splitting patterns commonly seen in the ¹H NMR spectra of organic compounds.

- In BrCH₂CHBr₂, for example, one adjacent CH proton splits an NMR signal into two peaks (a doublet), and two adjacent CH2 protons split an NMR signal into three peaks (a triplet).
- · The inside peaks of a split NMR signal are always most intense, with the area under the peaks decreasing from the inner to the outer peaks in a given splitting pattern.

Rule [3] Splitting is observed for nonequivalent protons on the same carbon or adjacent carbons.

Splitting is not generally observed between protons separated by more than three σ bonds. Although H_a and H_b are not equivalent to each other in 2-butanone and ethyl methyl ether, H_a and H_{b} are separated by four σ bonds and so they are too far away to split each other's NMR signals.

2-butanone H_a and H_b are separated by four o bonds. H_a and H_b are separated by four o bonds.

no splitting between H_a and H_b

CH2OOCHCH3

ethyl methyl ether

no splitting between H_a and H_b

Names for a Given Number of Peaks in an NMR Signal

Organic Chemistry, J. G. Smith, 3rd Ed.

Number of peaks	Name	Number of peaks	Name
1	singlet	5	quintet
2	doublet	6	sextet
3	triplet	7	septet
4	quartet	> 7	multiplet

Predicting splitting is always a two-step process:

- Determine if two protons are equivalent or different. Only nonequivalent protons split each other.
- Determine if two nonequivalent protons are close enough to split each other's signals. Splitting is observed only for nonequivalent protons on the same carbon or adjacent carbons.

Several examples of spin-spin splitting in specific compounds illustrate the result of this twostep strategy.

"The relative area under the peaks of a quartet is 1:3:3:1.

Organic Chemistry, J. G. Smith, 3rd Ed.

- All protons are equivalent (H_a), so there is no splitting and the NMR signal is one singlet.
- There are two NMR signals. H_a and H_b are nonequivalent protons bonded to adjacent C atoms, so they are close enough to split each other's NMR signals. The H_a signal is split into a triplet by the two H_b protons. The H_b signal is split into a triplet by the two H_a protons.
- There are three NMR signals. H_a has no adjacent nonequivalent protons, so its signal is a singlet. The H_b signal is split into a quartet by the three H_c protons. The H_c signal is split into a triplet by the two H_b protons.
- There are two NMR signals. H_a and H_b are nonequivalent protons on the same carbon, so they are close enough to split each other's NMR signals. The H_a signal is split into a doublet by H_b. The H_b signal is split into a doublet by H_a.

Into how many peaks will each indicated proton be split?

For each compound give the number of ¹H NMR signals, and then determine how many peaks are present for each NMR signal.

Sketch the NMR spectrum of CH₃CH₂Cl, giving the approximate location of each NMR signal.

More Complex Examples of Splitting

Up to now you have studied examples of spin-spin splitting where the absorbing proton has nearby protons on *one* adjacent carbon only. What happens when the absorbing proton has nonequivalent protons on *two* adjacent carbons? Different outcomes are possible, depending on whether the adjacent nonequivalent protons are *equivalent to* or *different from* each other.

- The H_a protons have only one adjacent nonequivalent proton (H_b), so they are split into two peaks, a doublet.
- H_b has three H_a protons on each side. Because the six H_a protons are *equivalent to each* other, the n + 1 rule can be used to determine splitting: 6 + 1 = 7 peaks, a septet.

This is a specific example of a general rule:

 Whenever two (or three) sets of adjacent protons are equivalent to each other, use the n + 1 rule to determine the splitting pattern. A different outcome results when an absorbing proton is flanked by adjacent protons that are not equivalent to each other. Consider the splitting pattern expected for the H_b protons in the

¹H NMR spectrum of CH₃CH₂CH₂Z. H_b has protons on both adjacent carbons, but since H_a and H_c are *not equivalent to each other*, we cannot merely add them together and use the n + 1 rule.

Instead, to determine the splitting of H_b , we must consider the effect of the H_a protons and the H_c protons *separately*. The three H_a protons split the H_b signal into four peaks, and the two H_c protons split each of these four peaks into three peaks—that is, the NMR signal due to H_b consists of $4 \times 3 = 12$ peaks.

 When two sets of adjacent protons are different from each other (n protons on one adjacent carbon and m protons on the other), the number of peaks in an NMR signal = (n + 1)(m + 1).

It is only possible to see 12 peaks in an NMR spectrum when the coupling constants between each set of nonequivalent protons—that is, J_{ab} and J_{bc} in this example—are different; in other words, $J_{ab} \neq J_{bc}$.

In practice, with flexible alkyl chains it is more common for J_{ab} and J_{bc} to be very similar or identical. In this case, peaks overlap and many fewer than 12 peaks are observed.

 The H_b signal is split into 12 peaks, a quartet of triplets. The number of peaks actually seen for the signal depends on the relative size of the coupling constants, J_{ab} and J_{bc}. When J_{ab} >> J_{bc}, as drawn in this diagram, all 12 lines of the pattern are visible. When J_{ab} and J_{bc} are similar in magnitude, peaks overlap and fewer lines are observed.

The ¹H NMR spectrum of 1-bromopropane, CH₃CH₂CH₂Br

In CH₃CH₂CH₂Br, the *n* protons on one adjacent carbon and the *m* protons on the other adjacent carbon split the observed signal into n + m + 1 peaks. In other words, the 3 H_a protons and 2 H_c protons split the NMR signal into 3 + 2 + 1 = 6 peaks,

How many peaks are present in the NMR signal of each indicated proton?

b. CICH₂CH₂CH₂Br † a. CICH₂CH₂CH₂CH₂CI

Solution

- b. CICH₂CH₂CH₂Br
 - † † † н_ан_ьн_е
- are equivalent to each other, the n + 1 rule can be used to determine splitting: 4 + 1 = 5 peaks, a guintet.

H_b has two H_a protons on each adjacent C. Because the four H_a protons

 H_b has two H_a protons on one adjacent C and two H_o protons on the other. Because Ha and Ha are not equivalent to each other, the maximum number of peaks for $H_b = (n + 1)(m + 1) = (2 + 1)(2 + 1) = 9$ peaks. However, since this molecule has a flexible alkyl chain, it is likely that J_{ab} and J_{bc} are very similar, so that peak overlap occurs. In this case, the number of peaks for $H_b = n + m + 1 = 2 + 2 + 1 = 5$ peaks.

How many peaks are present in the NMR signal of each indicated proton?

Describe the ¹H NMR spectrum of each compound. State how many NMR signals are present, the splitting pattern for each signal, and the approximate chemical shift.

c. CH₃OCH₂CH₂CH₂OCH₃ a. CH₂OCH₂CH₂

Spin-Spin Splitting in Alkenes

Protons on carbon–carbon double bonds often give characteristic splitting patterns. A disubstituted double bond can have two **geminal protons** (on the same carbon atom), two **cis protons**, or two **trans protons**. When these protons are different, each proton splits the NMR signal of the other, so that each proton appears as a doublet. **The magnitude of the coupling constant** *J* **for these doublets depends on the arrangement of hydrogen atoms**.

Thus, the E and Z isomers of 3-chloropropenoic acid both exhibit two doublets for the two alkenyl protons, but the coupling constant is larger when the protons are trans compared to when the protons are cis, as shown in Figure 14.9.

 Although both (E)- and (Z)-3-chloropropenoic acid show two doublets in their ¹H NMR spectra for their alkenyl protons, J_{trans} > J_{cis}. When a double bond is monosubstituted, there are three nonequivalent protons, and the pattern is more complicated because all three protons are coupled to each other. For example, vinyl acetate $(CH_2=CHOCOCH_3)$ has four different types of protons, three of which are bonded to the double bond. Besides the singlet for the CH₃ group, each proton on the double bond is coupled to two other different protons on the double bond, giving the spectrum in Figure 14.10.

- H_b has two nearby nonequivalent protons that split its signal, the geminal proton H_c and the trans proton H_d . H_d splits the H_b signal into a doublet, and the H_c proton splits the doublet into two doublets. This pattern of four peaks is called a **doublet of doublets**.
- H_c has two nearby nonequivalent protons that split its signal, the geminal proton H_b and the cis proton H_d . H_d splits the H_c signal into a doublet, and the H_b proton splits the doublet into two doublets, forming another **doublet of doublets**.
- H_d has two nearby nonequivalent protons that split its signal, the trans proton H_b and the cis proton H_c. H_b splits the H_d signal into a doublet, and the H_c proton splits the doublet into two doublets, forming another **doublet of doublets**.

Splitting diagrams for the three alkenyl protons in vinyl acetate are drawn in Figure 14.11. Note that each pattern is different in appearance because the magnitude of the coupling constants forming them is different.

Organic Chemistry, J. G. Smith, 3rd Ed.

Protons on Benzene Rings

Benzene has six equivalent, deshielded protons and exhibits a single peak in its ¹H NMR spectrum at 7.27 ppm. Monosubstituted benzene derivatives—that is, benzene rings with one H atom

 The appearance of the signals in the 6.5–8 ppm region of the ¹H NMR spectrum depends on the identity of Z in C₆H₅Z.

replaced by another substituent Z—contain five deshielded protons that are no longer all equivalent to each other. The identity of Z determines the appearance of this region of a ¹H NMR spectrum (6.5–8 ppm), as shown in Figure 14.13. We will not analyze the splitting patterns observed for the ring protons of monosubstituted benzenes. Problem 14.23 What protons in alcohol A give rise to each signal in its ¹H NMR spectrum? Explain all splitting patterns observed for absorptions between 0–7 ppm.

HOW TO Use ¹H NMR Data to Determine a Structure

Example Using its ¹H NMR spectrum, determine the structure of an unknown compound **X** that has molecular formula C₄H₈O₂ and contains a C=O absorption in its IR spectrum.

Step [1] Determine the number of different kinds of protons.

- The number of NMR signals equals the number of different types of protons.
- This molecule has three NMR signals ([A], [B], and [C]) and therefore three types of protons (H_a, H_b, and H_c).

Step [2] Use the integration data to determine the number of H atoms giving rise to each signal (Section 14.5).

- Total number of integration units: 14 + 11 + 15 = 40 units
- Total number of protons = 8
- Divide: 40 units/8 protons = 5 units per proton
- Then, divide each integration value by this answer (5 units per proton) and round to the nearest whole number.

Step [3] Use individual splitting patterns to determine what carbon atoms are bonded to each other.

Start with the singlets. Signal [C] is due to a CH₃ group with no adjacent nonequivalent H atoms. Possible structures include:

$$CH_3O-$$
 or CH_3O- or CH_3-C or CH_3-C

- Because signal [A] is a triplet, there must be 2 H's (CH₂ group) on the adjacent carbon.
- Because signal [B] is a quartet, there must be 3 H's (CH₃ group) on the adjacent carbon.
- This information suggests that X has an ethyl group $--\rightarrow$ CH₃CH₂-.

To summarize, **X** contains $CH_3 -$, $CH_3CH_2 -$, and C=O (from the IR). Comparing these atoms with the molecular formula shows that one O atom is missing. Because O atoms do not absorb in a ¹H NMR spectrum, their presence can only be inferred by examining the chemical shift of protons near them. O atoms are more electronegative than C, thus deshielding nearby protons, and shifting their absorption downfield.

Step [4] Use chemical shift data to complete the structure.

- Put the structure together in a manner that preserves the splitting data and is consistent with the reported chemical shifts.
- In this example, two isomeric structures (A and B) are possible for X considering the splitting data only:

- Chemical shift information distinguishes the two possibilities. The electronegative O atom deshields adjacent H's, shifting them downfield between 3 and 4 ppm. If A is the correct structure, the singlet due to the CH₃ group (H_c) should occur downfield, whereas if B is the correct structure, the quartet due to the CH₂ group (H_b) should occur downfield.
- Because the NMR of X has a singlet (not a quartet) at 3.7, A is the correct structure.