The Tricarboxylic Acid Cycle
(The Citric Acid Cycle)

This is a watermark for the trial version, register to get the full one!

Benefits for registered users:
1. No watermark on the output documents.
2. Can operate scanned PDF files via OCR.
3. No page quantity limitations for converted PDF files.

Second semester
Dr. Abdulhussien M. K. Aljebory
Three main pathways for energy production:
- Glycolysis
- Citric acid cycle
- Oxidative-Phosphorylation

Certain pathways are involved in both breakdown and buildup of molecules; these pathways are called amphibolic. The citric acid cycle is an example of this.

Benefits for registered users:
1. No watermark on the output documents.
2. Can operate scanned PDF files via OCR.
3. No page quantity limitations for converted PDF files.

Mitochondrion
- Outer membrane very permeable
- Inner membrane (cristae)
 - Permeable to pyruvate,
 - Impermeable to fatty acids, NAD, etc
- Matrix is inside inner membrane
Aerobic cells use a metabolic wheel – the citric acid cycle – to generate energy by acetyl CoA oxidation.

- A series of consecutive biochemical reactions catalyzed by enzymes that produce a specific end product.

Catabolism - the breakdown of food stuffs to simple organic chemicals.

Anabolism - the synthesis of biomolecules from simple organic chemicals.
Metabolism Summary

Proteins
- amino acids

Carbohydrates
- glucose, fructose, galactose

Fats and Lipids
- fatty acid, glycerol

This is a watermark for the trial version, register to get the full one!

Benefits for registered users:
1. No watermark on the output documents.
2. Can operate scanned PDF files via OCR.
3. No page quantity limitations for converted PDF files.

Urea Cycle
- urea

Citric Acid Cycle
- CO₂
- 2H⁺
- 2e⁻

Electron Transport Chain
- ATP
- ADP
- O₂
- H₂O

Remove Watermark Now
Synthesis of glycogen

Glucose

Glucose-6-phosphate

Pentose phosphate pathway

Ribose, NADPH

Degradation of glycogen

Glycogen

Glycolysis

Gluconeogenesis

Ethanol

Pyruvate

Acetyl CoA

Fatty Acids

Amino Acids

Acetyl CoA

Fumarate

Succinate

Succinyl CoA

α-Ketoglutarate

Malate

Citrate

Oxaloacetate

The citric acid cycle is the final common pathway for the oxidation of fuel molecules — amino acids, fatty acids, and carbohydrates.

Most fuel molecules enter the cycle as acetyl coenzyme A.

Benefits for registered users:
1. No watermark on the output documents.
2. Can operate scanned PDF files via OCR.
3. No page quantity limitations for converted PDF files.
Three main pathways for energy production:

1- Glycolysis
2- Citric acid cycle
3- Oxidative-Phosphorylation

- Certain pathways are involved in both breakdown and buildup of molecules; these pathways are called **amphibolic**. The citric acid cycle is an example of this.

- Eight successive reaction steps.
- The six carbon citrate is formed from two carbon acetyl-CoA and four carbon oxaloacetate.
- Oxidation of citrate yields CO2 and regenerates oxaloacetate.
- The energy released is captured in the reduced coenzymes NADH and FADH2.
An Overview of the Citric Acid Cycle

- A four-carbon oxaloacetate condenses with a two-carbon acetyl unit to yield a six-carbon citrate.
- An isomer of citrate is oxidatively decarboxylated and five-carbon α-ketoglutarate is formed.
- α-ketoglutarate is oxidatively decarboxylated to yield a four-carbon succinate.
- Oxaloacetate is then regenerated from succinate.

Benefits for registered users:
- 1. No watermark on the output documents after the usage.
- 2. Can operate scanned PDF files via OCR.
- 3. No page quantity limitations for converted PDF files.

Three hydride ions (six electrons) are transferred to three molecules of NAD⁺, one pair of hydrogen atoms (two electrons) is transferred to one molecule of FAD.
1. **Citrate Synthase**

- Citrate formed from *acetyl CoA* and *oxaloacetate*
- Only cycle reaction with C-C bond formation

Equation:

\[\text{Acetyl CoA} + \text{Oxaloacetate} \rightarrow \text{Citrate} \]

Benefits for registered users:
1. No watermark on the output documents.
2. Can operate scanned PDF files via OCR.
3. No page quantity limitations for converted PDF files.
2. Aconitase

- Elimination of H_2O from citrate to form $\text{C}=$ bond of *cis*-aconitate
- Stereospecific addition of H_2O to *cis*-aconitate to form isocitrate

This is a watermark for the trial version, register to get the full one!

Benefits for registered users:
1. No watermark on the output documents.
2. Can operate scanned PDF files via OCR.
3. No page quantity limitations for converted PDF files.
3. Isocitrate Dehydrogenase

- Oxidative decarboxylation of isocitrate to a-ketoglutarate (a metabolically irreversible reaction)
- One of four oxidation-reduction reactions of the cycle
- Hydride ion from the C-2 of isocitrate is transferred to NAD\(^+\) to form NADH

Benefits for registered users:
1. No watermark on the output documents.
2. Can operate scanned PDF files via OCR.
3. No page quantity limitations for converted PDF files.
4. The α-Ketoglutarate Dehydrogenase Complex

- Similar to pyruvate dehydrogenase complex
- Same coenzymes, identical mechanisms

E_1 - α-ketoglutarate dehydrogenase (with TPP)
E_2 - dihydrolipoyl succinyltransferase (with flexible lipoamide prosthetic group)
E_3 - dihydrolipoyl dehydrogenase (with FAD)

This is a watermark for the trial version, register to get the full one!

Benefits for registered users:
1. No watermark on the output documents.
2. Can operate scanned PDF files via OCR.
3. No page quantity limitations for converted PDF files.

\[\text{CH}_2 \text{COO}^{-} + \text{NAD}^+ + \text{CoA} \rightarrow \text{CH}_2 \text{COO}^{-} + \text{CO}_2 + \text{NADH} \]

α-Ketoglutarate \rightarrow Succinyl CoA
5. Succinyl-CoA Synthetase

- Free energy in thioester bond of succinyl CoA is conserved as GTP or ATP in higher animals (or ATP in plants, some bacteria)

- Substrate level phosphorylation reaction

\[
\text{GTP + ADP} \rightleftharpoons \text{GDP + ATP}
\]

This is a watermark for the trial version, register to get the full one!

Benefits for registered users:
1. No watermark on the output documents.
2. Can operate scanned PDF files via OCR.
3. No page quantity limitations for converted PDF files.
6. The Succinate Dehydrogenase Complex

- Complex of several polypeptides, an FAD prosthetic group and iron-sulfur clusters
- Embedded in the inner mitochondrial membrane
- Electrons are transferred from succinate to FAD and then to ubiquinone (Q) in electron transport chain
- Dehydrogenation is stereospecific; only the trans isomer is formed

Benefits for registered users:
1. No watermark on the output documents.
2. Can operate scanned PDF files via OCR.
3. No page quantity limitations for converted PDF files.
7. **Fumarase**

- Stereospecific *trans* addition of water to the double bond of *fumarate* to form *L-malate*

- Only the *L* isomer of malate is formed

This is a watermark for the trial version, register to get the full one!

Benefits for registered users:
1. No watermark on the output documents.
2. Can operate scanned PDF files via OCR.
3. No page quantity limitations for converted PDF files.
8. Malate Dehydrogenase

Malate is oxidized to form oxaloacetate.

This is a watermark for the trial version, register to get the full one!

Benefits for registered users:
1. No watermark on the output documents.
2. Can operate scanned PDF files via OCR.
3. No page quantity limitations for converted PDF files.
Stoichiometry of the Citric Acid Cycle

- Two carbon atoms enter the cycle in the form of acetyl CoA.
- Two carbon atoms leave the cycle in the form of CO₂.
- Four pairs of hydrogen atoms leave the cycle in four oxidation reactions (three molecules of NAD⁺ one molecule of FAD are reduced).
- One molecule of GTP, two molecules of water are consumed.
- 9 ATP (2.5 ATP per NADH, and 1.5 ATP per FADH₂) are produced during oxidative phosphorylation.
- 1 ATP is directly formed in the citric acid cycle.
- 1 acetyl CoA generates approximately 10 molecules of ATP.
Regulation of the Citric Acid Cycle

• **Pathway controlled by:**

 (1) Allosteric modulators
 (2) Covalent modification of cycle enzymes
 (3) Supply of acetyl CoA (pyruvate dehydrogenase complex)

This is a watermark for the trial version, register to get the full one!

Benefits for registered users:
1. No watermark on the output documents.
2. Can operate scanned PDF files via OCR.
3. No page quantity limitations for converted PDF files.

- **citrate synthase**
 (allosterically inhibited by NADH, ATP, succinyl CoA, citrate - feedback inhibition)

- **isocitrate dehydrogenase**
 (allostERIC effectors: (+) ADP; (-) NADH, ATP. Bacterial ICDH can be covalently modified by kinase/phosphatase)

- **α-ketoglutarate dehydrogenase complex**
 (inhibition by ATP, succinyl CoA and NADH)
Regulation of the citric acid cycle

This is a watermark for the trial version, register to get the full one!

Benefits for registered users:
1. No watermark on the output documents.
2. Can operate scanned PDF files via OCR.
3. No page quantity limitations for converted PDF files.
The citric acid cycle provides intermediates for biosyntheses.

Benefits for registered users:
1. No watermark on the output documents.
2. Can operate scanned PDF files via OCR.
3. No page quantity limitations for converted PDF files.
Net From Kreb’s

• Oxidative process
 – 3 NADH
 – 5 FADH₂
 – GTP
 – X2 per glucose
 – 6 NADH
 – 2 FADH₂
 – 2 GTP

This is a watermark for the trial version, register to get the full one!

Benefits for registered users:
1. No watermark on the output documents.
2. Can operate scanned PDF files via OCR.
3. No page quantity limitations for converted PDF files.

• All ultimately turned into ATP (oxidative phosphorylation)
Intermediates for Biosynthesis

The TCA cycle provides several of these

• α-Ketoglutarate is transaminated to make glutamate, which can be used to make purine nucleotides, Arg and Pro
• Succinyl-CoA can be used to make porphyrins
• Fumarate and oxaloacetate can be used to make several amino acids and also pyrimidine nucleotides

This is a watermark for the trial version, register to get the full one!

Benefits for registered users:
1. No watermark on the output documents.
2. Can operate scanned PDF files via OCR.
3. No page quantity limitations for converted PDF files.
Regulation of the TCA Cycle

Again, 3 reactions are the key sites

- **Citrate synthase** - ATP, NADH and succinyl-CoA inhibit
 - Isocitrate dehydrogenase - ATP inhibits, ADP and NAD+ activate
 - α-Ketoglutarate dehydrogenase - NADH and succinyl-CoA inhibit, AMP activates

- Also note pyruvate dehydrogenase: ATP, NADH, acetyl-CoA inhibit, NAD+, CoA activate