

Dr. Raaid Alubady

4th Lecture

1. Introduction

We mentioned the structure of the function in the previous lecture as well as we

highlighted many types of function, which may be utilized in Python. We also briefly noted

that Python supports many inbuilt functions. In some cases, you can decompose a complex

problem into smaller problems of exactly the same form. In these cases, functions can call

other functions and that sometimes this helps to make a complex problem more manageable

in some way. It turns out that not only can functions call other functions but the sub-

problems can all be solved by using the same function. This design strategy is called

recursive design, and the resulting functions are called recursive functions.

2. Function Call Another Function

It is important to understand that each of the functions we write can be used and called

from other functions in the same program. This is one of the most important ways that

computer scientists take a large problem and break it down into a group of smaller

problems. This process of breaking a problem into smaller sub-problems is called

functional decomposition.

Example 1:

def square(x):
 y = x * x
 return y

def sum_of_squares(x, y, z):
 a = square(x)
 b = square(y)

4th Lecture

Python: Recursive Functions

Dr. Raaid Alubady

4th Lecture

 c = square(z)
 return a + b + c

a = -5
b = 2
c = 10
result = sum_of_squares(a, b, c)
print(result)

Note: Building functions code according to calling it is very important.

3. Recursive Functions in Python

Recursion is a way of programming or coding a problem, in which a function calls itself

one or more times in its body. Usually, it is returning the return value of this function call.

If a function definition fulfills the condition of recursion, we call this function a recursive

function. On the other words, A recursive function is a function that calls itself. To

prevent a function from repeating itself indefinitely, it must contain at least one selection

statement. This statement examines a condition called a base case to determine whether

to stop or to continue with another recursive step.

Example 2: Define a function displayRange that prints the numbers from a lower bound

to an upper bound?

"Outputs the numbers from lower to upper."
def displayRange(lower, upper):

 while lower <= upper:
 print(lower, end=" ")
 lower = lower + 1

displayRange(100, 200)

The output
129

The output
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
195 196 197 198 199 200

Dr. Raaid Alubady

4th Lecture

The equivalent recursive function performs similar primitive operations, but the loop

is replaced with a selection statement, and the assignment statement is placed with

a recursive call of the function. Here is the code with these changes:

"Outputs the numbers from lower to upper."
def displayRange(lower, upper):
 if lower <= upper:

 print(lower, end=" ")
 lower = lower + 1
 displayRange(lower + 1, upper)

displayRange(100, 200)

Although the syntax and design of the two functions are different, the same

algorithmic process is executed. Each call of the recursive function visits the next

number in the sequence, just as the loop does in the iterative version of the function.

Example 3: This example is a recursive function that builds and returns a value. The

sum function computes and returns the sum of the numbers between these two

values. In the recursive version, sum returns 0 if lower exceeds upper (the base case).

Otherwise, the function adds lower to the sum of lower + 1 and upper and returns

this result. Here is the code for this function:

def sum(lower, upper):
 if lower > upper:
 return 0
 else:
 return lower + sum(lower + 1, upper)

print(sum(1, 100))

The output
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
195 196 197 198 199 200

The output
5050

Dr. Raaid Alubady

4th Lecture

Example 4: Factorial can be written in Python much the same way it is defined in

Mathematics. The if statement must come first and is the statement of the base case.

The recursive case is always written last.

def factorial(n):
 if n==0:
 return 1
 return n * factorial(n - 1)

IntergerN=int(input("The enter value: "))
print("The result is: ",factorial(IntergerN))

4. Tracing a Recursive Function (run-time stack)

To get a better understanding of how recursion works, it is helpful to trace its calls.

Let’s do that for the recursive version of the sum function. You add an argument for

a margin of indentation and print statements to trace the two arguments and the value

returned on each call. The first statement on each call computes the indentation,

which is then used in printing the two arguments. The value computed is also printed

with this indentation just before each call returns. Here is the code, followed by a

session showing its use:

"Returns the sum of the numbers from lower to upper, and outputs a trace of the arguments and
return values on each call."
def sum(lower, upper, margin):

 blanks = " " * margin
 print(blanks, lower, upper)

if lower > upper:
 print(blanks, 0)
 return 0

else:
 result = lower + sum(lower + 1, upper, margin + 4)
 print(blanks, result)
 return result

sum(1, 4, 0)

The another way to trace its calls. Here is what the stack diagram looks like for this

sequence of function calls (factorial function in example):

The output
The enter value: 5
The result is: 120

The output
1 4
 2 4
 3 4
 4 4
 5 4
 0
 4
 7
 9
 10

Dr. Raaid Alubady

4th Lecture

5. Exercises
1. Draw a special flowchart that represents the Example 1?

2. The naive way to compute an for an integer n is simply to multiply a by itself n

times an = a∗a∗a∗. . .∗a. We can easily implement this using a simple accumulator

loop.

def loopPower(a, n):

 ans = 1

 for i in range(n):

 ans = ans * a

 return ans

print (loopPower(3,4))

Write a recursive function to get the same result?

3. Write a recursive function that computes the nth Fibonacci number. The Fibonacci

numbers are defined as follows: Fib(0) = 1, Fib(1) = 1, Fib(n) = Fib(n − 1) + Fib(n

− 2). Write this as a Python function and then write some code to find the tenth

Fibonacci number?

4. Write algorithm and Python coding for a recursive function that computes the

following equation:

𝐶𝑘
𝑛 =

𝑛!

𝑘! (𝑛 − 𝑘)!

<Best Regards>

Dr. Raaid Alubady

