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Boolean Algebra And Logic Gates 
 

1.  Introduction 

Binary logic deals with variables that have two discrete values: 1 for TRUE and 0 for FALSE. A simple 

switching circuit containing active elements such as a diode and transistor can demonstrate the binary logic, 

which can either be ON (switch closed) or OFF (switch open). Electrical signals such as voltage and current 

exist in the digital system in either one of the two recognized values, except during transition. 

The switching functions can be expressed with Boolean equations, Complex Boolean equations can be 

simplified by a new kind of algebra, which is popularly called Switching Algebra or Boolean Algebra, 

invented by the mathematician George Boole. Boolean Algebra deals with the rules by which logical 

operations are carried out. 

 

2.   Basic Definitions 

       Boolean algebra, like any other deductive mathematical system, may be defined with a set of elements, 

a set of operators, and a number of assumptions and postulates. A set of elements means any collection of 

objects having common properties. If S denotes a set, and X and Y are certain objects, then X ∈ S denotes X 

is an object of set S, whereas Y ∉ S denotes Y is not the object of set S. A binary operator defined on a set S 

of elements is a rule that assigns to each pair of elements from S a unique element from S. As an example, 

consider this relation X*Y = Z. This implies that * is a binary operator if it specifies a rule for finding Z from 

the objects ( X, Y ) and also if all X, Y, and Z are of the same set S. On the other hand, * can not be binary 

operator if X and Y are of set S and Z is not from the same set S. 

The postulates of a mathematical system are based on the basic assumptions, which make possible to deduce 

the rules, theorems, and properties of the system.  
 

Various algebraic structures are formulated on the basis of the most common postulates, which are 

described as follows: 
 

1. Closer: A set is closed with respect to a binary operator if, for every pair of elements of S, the binary 

operator specifies a rule for obtaining a unique element of S. For example, the set of natural numbers N = {1, 

2, 3, 4, ...} is said to be closed with respect to the binary operator plus ( + ) by the rules of arithmetic 

addition, since for any X,Y ∈  N we obtain a unique element Z ∈  N by the operation X + Y = Z. However, 

note that the set of natural numbers is not closed with respect to the binary operator minus (–) by the 

rules of arithmetic subtraction because for 1 – 2 = –1, where –1 is not of the set of naturals numbers. 
 

2. Associative Law: Such as a binary operator * on a set S is said to be associated whenever : 

                                   (A*B)*C = A*(B*C) for all A,B,C ∈ S. 
 

3. Commutative Law: A binary operator * on a set S is said to be commutative Whenever: 

                                       A*B = B*A for all A,B ∈ S. 
 

4.  Identity Element: A set S is to have an identity element with respect to a binary operation such as * on 

S, if there exists an element E ∈ S with the property E*A = A*E = A, the element 1 is the identity element 

with respect to the binary operator × as A × 1 = 1 × A = A. 

The element 0 is an identity element with respect to the binary operator + on the set of integers I = {.... –4, –

3, –2, –1, 0, 1, 2, 3, 4, ....} as A + 0 = 0 + A = A. 
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5.   Inverse: If a set S has the identity element E=1 with respect to a binary operator *, there exists an 

element B ∈  S, which is called the inverse, for every A ∈  S, such that A*B = E. 

In the set of integers I with E = 0, the inverse of an element A is (-A) since A + (–A) = 0. 
 

6.  Distributive Law: If * and (.) are two binary operators on a set S, * is said to be distributive over (.), 

whenever A*(B.C) = (A*B).(A*C). 

 

If summarized, for the field of real numbers, the operators and postulates have the following meanings: 

 

 

 

 

 

 

 

 

 

 

3.  Definition Of Boolean Algebra 

      An algebraic system treats the logic functions, which is now called Boolean algebra. There is a two-

valued Boolean algebra called Switching algebra, the properties of two-valued or bitable electrical switching 

circuits can be represented by this algebra.  

 

The following Huntington postulates are satisfied for the definition of Boolean algebra on a set of 

elements S together with two binary operators (+) and (.): 
 

1.  (a) Closer with respect to the operator (+). 

     (b) Closer with respect to the operator (.). 
 

2.  (a) An identity element with respect to + is designated by 0 i.e., A + 0 = 0 + A = A. 

     (b) An identity element with respect to . is designated by 1 i.e., A.1 = 1. A = A. 
 

3.  (a) Commutative with respect to (+), i.e., A + B = B + A. 

     (b) Commutative with respect to (.), i.e., A.B = B.A. 
 

4.  (a) (.) is distributive over (+), i.e., A . (B+C) = (A . B) + (A . C). 

     (b) (+) is distributive over (.), i.e., A + (B .C) = (A + B) . (A + C). 
 

5. For every element A ∈ S, there exists an element A' ∈ S (called the complement of A) such that: 

         A + A′ = 1       and      A . A′ = 0. 

6. There exists at least two elements A,B ∈ S, such that A is not equal to B. 

 

Comparing Boolean algebra with arithmetic and ordinary algebra (the field of real numbers), the 

following differences are observed: 

1. Huntington postulates do not include the associate law. However, Boolean algebra follows the law and can 

be derived from the other postulates for both operations. 

2. The distributive law of (+) over ( . ) i.e., A+ (B.C) = (A+B) . (A+C) is valid for Boolean algebra, but not 

for ordinary algebra. 

                   The binary operator + defines addition. 

                   The additive identity is 0. 

                   The additive inverse defines subtraction. 
 

                   The binary operator (.) defines multiplication. 

                   The multiplication identity is 1. 

                   The multiplication inverse of A is 1/A, defines division i.e., A. 1/A = 1. 
 

                   The only distributive law applicable is that of (.) over + whereas     A . (B + C) = (A . B) + (A . C) 
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3. Boolean algebra does not have additive or multiplicative inverses, so there are no subtraction or division 

operations. 

4. Postulate 5 defines an operator called Complement, which is not available in ordinary algebra. 

5. Ordinary algebra deals with real numbers, which consist of an infinite set of elements. Boolean algebra 

deals with the as yet undefined set of elements S, but in the two valued Boolean algebra, the set S consists of 

only two elements: 0 and 1. 
 

Boolean algebra is very much similar to ordinary algebra in some respects. The symbols (+) and (.) are 

chosen intentionally to facilitate Boolean algebraic manipulations by persons already familiar to ordinary 

algebra. Although one can use some knowledge from ordinary algebra to deal with Boolean algebra, 

beginners must be careful not to substitute the rules of ordinary algebra where they are not applicable. 

 

4.  Two-Valued Boolean Algebra 

      Two-valued Boolean algebra is defined on a set of only two elements, S = {0,1}, with rules for two 

binary operators (+) and (.) and inversion or complement as shown in the following operator tables at 

Figures 1, 2, and 3 respectively. 

 

 

 

 

 

 

These rules are exactly the same for as the logical OR, AND, and NOT operations, respectively.  

It can be shown that the Huntington postulates are applicable for the set S = {0,1} and the two binary 

operators defined above. 

1. Closure is obviously valid, as form the table it is observed that the result of each operation is either 0 or 1 

and 0,1 ∈ S. 

2. From the tables, we can see that identity element: 

(i)      0 + 0 = 0        0 + 1 = 1 + 0 = 1 

(ii)     1 . 1 = 1              0 . 1 = 1 . 0 = 0 

which verifies the two identity elements 0 for (+) and 1 for (.) as defined by postulate 2. 

3. The commutative laws are confirmed by the symmetry of binary operator tables. 

4. The distributive laws of (.) over (+) i.e., A . (B+C) = (A . B) + (A . C), and (+) over (.) i.e., A + ( B . C) = 

(A+B) . (A+C) can be shown to be applicable with the help of the truth tables considering all the possible 

values of A, B, and C as under. From the complement table it can be observed that: 

(a)      Operator (.) over (+) 

     

 
Figure 1 Figure 2 Figure 3 

Figure 4 
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(b)    Operator (+) over (.) 

 

   (c)     A + A′ = 1, since 0 + 0' = 1 and 1 + 1' = 1. 

   (d)     A . A′ = 0, since 0 . 0' = 0 and 1 . 1' = 0. 

These confirm postulate 5. 

5. Postulate 6 also satisfies two-valued Boolean algebra that has two distinct elements 0 and 1 where 0 is not 

equal to 1. 

 

5.  Basic Properties And Theorems Of Boolean Algebra 

DeMorgan's Theorem 

Two theorems that were proposed by DeMorgan play important parts in Boolean algebra. 
 

 The first theorem states that the complement of a product is equal to the sum of the complements. That 

is, if the variables are A and B, then:               (A.B)′ = A′ + B′ 

 

 The second theorem states that the complement of a sum is equal to the product of the complements. In 

equation form, this can be expressed as:          (A + B)′ = A′ . B′ 
 

The complements of Boolean logic function or a logic expression may be simplified or expanded by the 

following steps of DeMorgan’s theorem. 

(a) Replace the operator (+) with (.) and (.) with (+) given in the expression. 

(b) Complement each of the terms or variables in the expression. 
 

DeMorgan’s theorems are applicable to any number of variables. For three variables A, B, and C, the 

equations are:          (A.B.C)′ = A′ + B′ + C′        and       (A + B + C)′ = A′.B′.C′ 

 

The following is the complete list of postulates and theorems useful for two-valued Boolean algebra. 

 

 

 

 

 

 

 

 

Figure 5 

 

Figure 6 
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6.  Boolean Functions 

       Binary variables have two values, either 0 or 1. A Boolean function is an expression formed with binary 

variables, the two binary operators AND and OR, one unary operator NOT, parentheses and equal sign. The 

value of a function may be 0 or 1, depending on the values of variables present in the Boolean function or 

expression.  

For example, if a Boolean function is expressed algebraically as:           F = AB′C 

Then the value of  F will be 1, when A = 1, B = 0, and C = 1. For other values of A, B, C the value of F is 0. 

 

Boolean functions can also be represented by truth tables. A truth table is the tabular form of the values of 

a Boolean function according to the all possible values of its variables. For an n number of variables, 2n 

combinations of 1s and 0s are listed and one column represents function values according to the different 

combinations. For example, for three variables the Boolean function F = AB + C  truth table can be written 

as below in Figure 7. 

 
 

A Boolean function from an algebraic expression can be realized to a logic diagram composed of logic 

gates. Figure 8 is an example of a logic diagram realized by the basic gates like AND, OR, and NOT gates. 

 

 

 

 

7.  Canonical And Standard Forms الصيغ القانونية والقياسية 

       Logical functions are generally expressed in terms of different combinations of logical variables with 

their true forms as well as the complement forms. Binary logic values obtained by the logical functions and 

logic variables are in binary form. 
   

An arbitrary logic function can be expressed in the following forms. 

(i)    Sum of the Products (SOP) 

(ii)   Product of the Sums (POS) 
 

Product Term: In Boolean algebra, the logical product of several variables on which a function depends is 

considered to be a product term. In other words, the AND function is referred to as a product term or 

standard product. The variables in a product term can be either in true form or in complemented form. For 

example, ABC′ is a product term. 
 

Sum Term: An OR function is referred to as a sum term. The logical sum of several variables on which a 

function depends is considered to be a sum term. Variables in a sum term can also be either in true form or in 

complemented form. d 

Figure 7 

 

Figure 8 
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Sum of Products (SOP): The logical sum of two or more logical product terms is referred to as a sum of 

products expression. It is basically an OR operation on AND operated variables.  

For example, Y = AB + BC + AC or Y = A′B + BC + AC′ are sum of products expressions. 
 

Product of Sums (POS): Similarly, the logical product of two or more logical sum terms is called a product 

of sums expression. It is an AND operation on OR operated variables.  

For example, Y = (A + B + C)(A + B′ + C)(A + B + C′) or Y = (A + B + C)(A′ + B′ + C′) are product of 

sums expressions. 
 

Standard form: The standard form of the Boolean function is when it is expressed in sum of the products or 

product of the sums fashion. The examples stated above, like Y =AB + BC + AC or Y = (A + B + C)(A + B′ 

+ C)(A + B + C′) are the standard forms. 
 

However, Boolean functions are also sometimes expressed in nonstandard forms like F = (AB + CD)(A′B′ + 

C′D′), which is neither a sum of products form nor a product of sums form. However, the same expression 

can be converted to a standard form with help of various Boolean properties, as: 

F = (AB + CD)(A′B′ + C′D′) = A′B′CD + ABC′D′ 

 

7.1  Minterm 

       A product term containing all n variables of the function in either true or complemented form is called 

the minterm. Each minterm is obtained by an AND operation of the variables in their true form or 

complemented form.  

For a two-variable function, four different combinations are possible, such as, A′B′, A′B, AB′, and AB. 

These product terms are called the fundamental products or standard products or minterms. In the minterm, a 

variable will have the value 1 if it is in true or uncomplemented form, whereas, it contains the value 0 if it 

is in complemented form. For three variables function, eight minterms are possible as listed in the following 

table in Figure 9. So, if the number of variables is n, then the possible number of minterms is 2n. 

 

 

 

 

 

 

 

 

 

 

          

The main property of a minterm is that it has the value of 1 for only one combination of n input variables and 

the rest of the 2n – 1 combinations have the logic value of  0. This means, for the above three variables 

example, if A = 0, B = 1, C = 1 i.e., for input combination of 011, there is only one combination A′BC that 

has the value 1, the rest of the seven combinations have the value 0. 

 

Canonical Sum of Product Expression: When a Boolean function is expressed as the logical sum of all the 

minterms from the rows of a truth table, for which the value of the function is 1, it is referred to as the 

canonical sum of product expression.  

 

 

Figure 9 
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The canonical sum of products form of a logic function can be obtained by using the following procedure: 
 

1. Check each term in the given logic function. Retain if it is a minterm, continue to examine                

      the next term in the same manner. 

           2. Examine for the variables that are missing in each product which is not a minterm. 

               If the missing variable in the minterm is X, multiply that minterm with (X+X′). 

           3. Multiply all the products and discard the redundant terms. 
 

Here are some examples to explain the above procedure. 

Example 1  Obtain the canonical sum of product form of the function    F (A, B) = A + B 

Solution: The given function contains two variables A and B. The variable B is missing from the first term of 

the expression and the variable A is missing from the second term of the expression. Therefore, the first term 

is to be multiplied by (B + B′) and the second term is to be multiplied by (A + A′) as demonstrated below. 

F (A, B) = A + B 

= A.1 + B.1 

= A (B + B′) + B (A + A′) 

= AB + AB′ + AB + A′B 

= AB + AB′ + A′B   (as AB + AB = AB) 

Hence the canonical sum of the product expression of the given function is  F (A, B) = AB + AB′ + A′B. 
 

Example 2  Obtain the canonical sum of product form of the function      F (A, B, C) = A + BC 

Solution: Here neither the first term nor the second term is minterm. The given function contains three 

variables A, B, and C. The variables B and C are missing from the first term of the expression and the 

variable A is missing from the second term of the expression. Therefore, the first term is to be multiplied by 

(B + B′) and (C + C′). The second term is to be multiplied by (A + A′). This is demonstrated below. 

F (A, B, C) = A + BC 

= A (B + B′) (C + C′) + BC (A + A′) 

= (AB + AB′) (C + C′) + ABC + A′BC 

= ABC + AB′C + ABC′ + AB′C′ + ABC + A′BC 

= ABC + AB′C + ABC′ + AB′C′ + A′BC (as ABC + ABC = ABC) 

Hence the canonical sum of the product expression is : F (A, B,C) = ABC + AB′C + ABC′ + AB′C′ + A′BC. 
 

7.2   Maxterm 

        A sum term containing all n variables of the function in either true or complemented form is called the 

maxterm. Each maxterm is obtained by an OR operation of the variables in their true form or 

complemented form. Four different combinations are possible for a two-variable function, such as, A′ + B′, 

A′ + B, A + B′, and A + B. These sum terms are called the standard sums or maxterms. Note that, in the 

maxterm, a variable will have the value 0, if it is in true or uncomplemented form, whereas, it contains the 

value 1, if it is in complemented form. Like minterms, for a three-variable function, eight maxterms are also 

possible as listed in the following table in Figure 10. 

 

 

 

 

 

 

 

 

 

Figure 10 
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So, if the number of variables is n, then the possible number of maxterms is 2n.  

The main property of a maxterm is that it has the value of 0 for only one combination of n input variables 

and the rest of the 2n –1 combinations have the logic value of 1. This means, for the above three variables 

example, if A = 1, B = 1, C = 0 i.e., for input combination of 110, there is only one combination A′ + B′ + C 

that has the value 0, the rest of the seven combinations have the value 1. 

 

Canonical Product of Sum Expression: When a Boolean function is expressed as the logical product of all 

the maxterms from the rows of a truth table, for which the value of the function is 0, it is referred to as the 

canonical product of sum expression.  
 

The canonical product of sums form of a logic function can be obtained by using the following procedure. 
 

1. Check each term in the given logic function. Retain it if it is a maxterm, continue to examine  

      the next term in the same manner. 

2.  Examine for the variables that are missing in each sum term that is not a maxterm. 

                 If the missing variable in the maxterm is X, add that maxterm with (X.X′). 

3. Expand the expression using the properties and postulates as described earlier and discard  

      the redundant terms. 

 

Some examples are given here to explain the above procedure. 

Example 3   Obtain the canonical product of the sum form of the following function. 

                                   F (A, B, C) = (A + B′) (B + C) (A + C′) 

Solution: In the above three-variable expression, C is missing from the first term, A is missing from the 

second term, and B is missing from the third term. Therefore, CC′ is to be added with first term, AA′ is to be 

added with the second, and BB′ is to be added with the third term. This is shown below. 

F (A, B, C) = (A + B′) (B + C) (A + C′) 

= (A + B′ + 0) (B + C + 0) (A + C′ + 0) 

= (A + B′ + CC′) (B + C + AA′) (A + C′ + BB′) 

= (A + B′ + C) (A + B′ + C′) (A + B + C) (A′ + B + C) (A + B + C′) (A + B′ + C′) 

[using the distributive property, as X + YZ = (X + Y)(X + Z)] 

= (A + B′ + C) (A + B′ + C′) (A + B + C) (A′ + B + C) (A + B + C′) 

[as (A + B′ + C′) (A + B′ + C′) = A + B′ + C′] 

Hence the canonical product of the sum expression for the given function is 

F (A, B, C) = (A + B′ + C) (A + B′ + C′) (A + B + C) (A′ + B + C) (A + B + C′) 

 

Example 4   Obtain the canonical product of the sum form of the function     F (A, B, C) = A + B′C 

Solution: In the above three-variable expression, the function is given at sum of the product form. First, the 

function needs to be changed to product of the sum form by applying the distributive law as shown below. 

F (A, B, C) = A + B′C 

= (A + B′) (A + C) 

Now, in the above expression, C is missing from the first term and B is missing from the second term. Hence 

CC′ is to be added with the first term and BB′ is to be added with the second term as shown below. 

F (A, B, C) = (A + B′) (A + C) 

= (A + B′ + CC′) (A + C + BB′) 

= (A + B′ + C) (A + B′ + C′) (A + B + C) (A + B′ + C) 

[using the distributive property, as X + YZ = (X + Y) (X + Z)] 
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= (A + B′ + C) (A + B′ + C′) (A + B + C) 

[as (A + B′ + C) (A + B′ + C) = A + B′ + C] 

Hence the canonical product of the sum expression for the given function is 

F (A, B, C) = (A + B′ + C) (A + B′ + C′) (A + B + C). 

7.3  Deriving a Sum of Products (SOP) Expression from a Truth Table 

      The sum of products (SOP) expression of a Boolean function can be obtained from its truth table 

summing or performing OR operation of the product terms corresponding to the combinations containing a 

function value of 1. In the product terms the input variables appear either in true (uncomplemented) form if it 

contains the value 1, or in complemented form if it has the value 0. 

Now, consider the following truth table in Figure 11, for a three-input function Y. Here the output Y value is 

1 for the input conditions of 010, 100, 101, and 110, and their corresponding product terms are A′BC′, AB′C′, 

AB′C, and ABC′ respectively. 

 

 

 

 

 

 

 

 

The final sum of products expression (SOP) for the output Y is derived by summing or performing an OR 

operation of the four product terms as shown :      Y = A′BC′ + AB′C′ + AB′C + ABC′ 
 

In general, the procedure of deriving the output expression in SOP form from a truth table can be 

summarized as below. 
 

1. Form a product term for each input combination in the table, containing an output value of 1. 

2. Each product term consists of its input variables in either true form or complemented form. If the input 

variable is 0, it appears in complemented form and if the input variable is 1, it appears in true form. 

3. To obtain the final SOP expression of the output, all the product terms are OR operated. 

7.4   Deriving a Product of Sums (POS) Expression from a Truth Table 

As explained above, the product of sums (POS) expression of a Boolean function can also be obtained from 

its truth table by a similar procedure. Here, an AND operation is performed on the sum terms corresponding 

to the combinations containing a function value of 0. In the sum terms the input variables appear either in 

true (uncomplemented) form if it contains the value 0, or in complemented form if it has the value 1. 
 

Now, consider the same truth table as shown in Figure 11, for a three-input function Y. Here the output Y 

value is 0 for the input conditions of 000, 001, 011, and 111, and their corresponding product terms are A + 

B + C, A + B + C′, A + B′ + C′, and A′ + B′ + C′ respectively. 

So now, the final product of sums expression (POS) for the output Y is derived by performing an AND 

operation of the four sum terms as shown below. 

Y = (A + B + C) (A + B + C′) (A + B′ + C′) (A′ + B′ + C′) 

 

Figure 11 
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In general, the procedure of deriving the output expression in POS form from a truth table can be 

summarized as below. 
 

1. Form a sum term for each input combination in the table, containing an output value of 0. 

2. Each product term consists of its input variables in either true form or complemented 

form. If the input variable is 1, it appears in complemented form and if the input variable is 0, it appears in 

true form. 

3. To obtain the final POS expression of the output, all the sum terms are AND 

operated. 

 

 

8.  DIGITAL LOGIC GATES 

      As Boolean functions are expressed in terms of AND, OR, and NOT operations, it is easier to implement 

the Boolean functions with these basic types of gates. However, for all practical purposes, it is possible to 

construct other types of logic gates.  

 

 

The following factors are to be considered for construction of other types of gates. 

1. The feasibility and economy of producing the gate with physical parameters. 

2. The possibility of extending to more than two inputs. 

3. The basic properties of the binary operator such as commutability and associability. 

4. The ability of the gate to implement the Boolean functions alone or in conjunction with other gates. 

Figure 12 
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There are eight functions—Transfer (or buffer), Complement, AND, OR, NAND, NOR, Exclusive-OR 

(XOR), and Equivalence (XNOR) that may be considered to be standard gates in digital design.  

The transfer or buffer and complement or inverter or NOT gates are unary gates, i.e., they have single 

input, while other logic gates have two or more inputs. 
 

8.1  Extension to Multiple Inputs 

     A gate can be extended to have multiple inputs if its binary operation is commutative and associative. 

AND and OR gates are both commutative and associative. 

For the AND function, AB = BA   -commutative 

And     (AB)C = A(BC) = ABC.  -associative 

For the OR function, A + B = B + A  -commutative 

And     (A + B) + C = A + (B + C).  -associative 

These indicate that the gate inputs can be interchanged and these functions can be extended to three or more 

variables very simply as shown in Figures 13(a) and 13(b). 

 

 

 

 

 

 

 

 

The NAND and NOR functions are the complements of AND and OR functions respectively. They are 

commutative, but not associative. So these functions can not be extended to multiple input variables very 

simply. However, these gates can be extended to multiple inputs with slightly modified functions as shown in 

Figures 14(a) and 14(b) below. 

 

For NAND function, (AB)′ = (BA)′.   -commutative 

But, ((AB)′C)′ ≠ (A(BC)′)′.    -does not follow associative property. 

As ((AB)′ C)′ =(AB) + C′      and          (A(BC)′)′ = A′ + BC. 

 

Similarly, for NOR function, ((A + B)′ + C)′ ≠ (A + (B + C)′)′. 

As, ((A + B)′ + C)′ = (A + B) C′ = AC′ + BC′. 

And (A + (B + C)′)′ = A′(B + C) = A′B + A′C.  

 

 

 

 

 
Figure 13(a) 

 
Figure 13(b) 

 
Figure  14(a) 
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The Exclusive-OR gates and equivalence gates both have commutative and associative properties, and they 

can be extended to multiple input variables. For a multiple-input Ex-OR (XOR) gate output is low when even 

numbers of 1s are applied to the inputs, and when the number of 1s is odd the output is logic 0. Equivalence 

gate or XNOR gate is equivalent to XOR gate followed by NOT gate and hence its logic behavior is opposite 

to the XOR gate. However, multiple-input exclusive-OR and equivalence gates are uncommon in practice. 

Figures 15(a) and 15(b) describe the extension to multiple-input exclusive-OR and equivalence gates. 

 

 

 

 

 

 

 

8.2 Universal Gates 

      NAND gates and NOR gates are called universal gates or universal building blocks, as any type of gates 

or logic functions can be implemented by these gates. Figures 16(a)-(e) show how various logic functions 

can be realized by NAND gates and Figures 17(a)-(d) show the realization of various logic gates by NOR 

gates. 

 

 

 

 

   

 

 

 

 

 

 

 

 

Figure  14(b) 

 

 

Figure 15(a) 

Figure 15(b) 

 

Figure  16(a) 

Figure 16(b) 

 

Figure 16(c) 
Figure 16(d) 

 

Figure 16(e) 
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Figure 17(a) 

Figure 17(b) 

 

Figure  17(c) 

 

Figure 17(d) 


