
University of Babylon

College of Information Technology

Department of Information Networks

Data Communication and Networking I

4
th

 Stage, Lecture 2

1

Error-Detection and -Correction Techniques

1. Introduction
In this lecture we will examine a few of the simplest techniques that can be used to detect

and, in some cases, correct such bit errors. Figure 1 illustrates the setting for our study. At the

sending node, data, D, to be protected against bit errors is augmented with error-detection and

correction bits (EDC). Typically, the data to be protected includes not only the datagram

passed down from the network layer for transmission across the link, but also link-level

addressing information, sequence numbers, and other fields in the link frame header. Both D

and EDC are sent to the receiving node in a link-level frame. At the receiving node, a

sequence of bits, D′ and EDC′ is received. Note that D′ and EDC′ may differ from the

original D and EDC as a result of in-transit bit flips. The receiver’s challenge is to determine

whether or not D′ is the same as the original D, given that it has only received D′ and EDC′.

The exact wording of the receiver’s decision in Figure 1 (we ask whether an error is detected,

not whether an error has occurred!) is important. Error-detection and -correction techniques

allow the receiver to sometimes, but not always, detect that bit errors have occurred. Even

with the use of error-detection bits there still may be undetected bit errors; that is, the

receiver may be unaware that the received information contains bit errors.

Figure 1: Error-detection and -correction scenario.

Let’s now examine three techniques for detecting errors in the transmitted data: parity checks

(to illustrate the basic ideas behind error detection and correction), checksumming methods

(which are more typically used in the transport layer), and cyclic redundancy checks (which

are more typically used in the link layer in an adapter).

University of Babylon

College of Information Technology

Department of Information Networks

Data Communication and Networking I

4
th

 Stage, Lecture 2

2

1.1 Parity Checks
Perhaps the simplest form of error detection is the use of a single parity bit. Suppose that the

information to be sent, D in Figure 2, has d bits. In an even parity scheme, the sender simply

includes one additional bit and chooses its value such that the total number of 1s in the d + 1

bits (the original information plus a parity bit) is even. For odd parity schemes, the parity bit

value is chosen such that there is an odd number of 1s. Figure 2 illustrates an even parity

scheme, with the single parity bit being stored in a separate field.

Receiver operation is also simple with a single parity bit. The receiver need only count the

number of 1s in the received d + 1 bits. If an odd number of 1-valued bits are found with an

even parity scheme, the receiver knows that at least one bit error has occurred. More

precisely, it knows that some odd number of bit errors have occurred. But what happens if an

even number of bit errors occur? You should convince yourself that this would result in an

undetected error.

Figure 2: One-bit even parity.

Let’s consider a simple generalization of one-bit parity that will provide us with insight into

error-correction techniques. Figure 3 shows a two-dimensional generalization of the single-

bit parity scheme. Here, the d bits in D are divided into i rows and j columns. A parity value

is computed for each row and for each column. The resulting i + j + 1 parity bits comprise the

link-layer frame’s error-detection bits.

Suppose now that a single bit error occurs in the original d bits of information. With this two-

dimensional parity scheme, the parity of both the column and the row containing the flipped

bit will be in error. The receiver can thus not only detect the fact that a single bit error has

occurred, but can use the column and row indices of the column and row with parity errors to

actually identify the bit that was corrupted and correct that error! Figure 3 shows an example

in which the 1-valued bit in position (2,2) is corrupted and switched to a 0—an error that is

both detectable and correctable at the receiver. Although our discussion has focused on the

original d bits of information, a single error in the parity bits themselves is also detectable

and correctable.

University of Babylon

College of Information Technology

Department of Information Networks

Data Communication and Networking I

4
th

 Stage, Lecture 2

3

Figure 3: Two-dimensional even parity.

1.2 Checksumming Methods
In checksum error detection scheme, the data is divided into k segments each of m bits. In the

sender’s end the segments are added using 1’s complement arithmetic to get the sum. The

sum is complemented to get the checksum. The checksum segment is sent along with the data

segments as shown in the following example. At the receiver’s end, all received segments are

added using 1’s complement arithmetic to get the sum. If the result is ones, the received data

is accepted; otherwise discarded.

Suppose that you have the following data: (10110011101010110101101011010101) and k=4,

m=8. To calculate the checksum (in the sender side) we do the following calculation:

University of Babylon

College of Information Technology

Department of Information Networks

Data Communication and Networking I

4
th

 Stage, Lecture 2

4

Sender:

10110011

10101011

01011110

 1

01011111

01011010

10111001

11010101

10001110

 1

Sum:10001111

Checksum:01110000

Receiver:

10110011

10101011

01011110

 1

01011111

01011010

10111001

11010101

10001110

 1

10001111

01110000

Sum:11111111

No error

1.3 Cyclic Redundancy Check (CRC)

An error-detection technique used widely in today’s computer networks is based on cyclic

redundancy check (CRC) codes. CRC codes operate as follows. Consider the d-bit piece of

data, D, that the sending node wants to send to the receiving node. The sender and receiver

must first agree on an r + 1 bit pattern, known as a generator, which we will denote as G.

We will require that the most significant (leftmost) bit of G be a 1. The key idea behind CRC

is that for a given piece of data, D, the sender will choose r additional bits, R, and append

them to D such that the resulting d + r bit pattern (interpreted as a binary number) is exactly

divisible by G (i.e., has no remainder) using modulo-2 arithmetic. The process of error

checking with CRCs is thus simple: The receiver divides the d + r received bits by G. If the

remainder is nonzero, the receiver knows that an error has occurred; otherwise the data is

accepted as being correct.

Figure 4 illustrates this calculation for the case of D = 101110, d = 6, G = 1001, and r = 3.

The 9 bits transmitted in this case are 101 110 011.

University of Babylon

College of Information Technology

Department of Information Networks

Data Communication and Networking I

4
th

 Stage, Lecture 2

5

Figure 4: A sample CRC calculation

