University of Babylon /College Of Engineering Electrochemical Engineering Dept. Second Stage /Thermodynamics

PVT relationship

The below diagram show pressure-volume-temperature for pure substance as below

1-2 Sublimation curve. 3 Fluid region 2-C Vaporization curve. P. 2-3 Fusion curve. Liquid region Fusion curve Point 2 triple point. Pressure Vaporization Point C critical point, curve Critical point coordinate maximum R Solid region temperature and maximum pressure Gas region which liquid and vapor found at Triple Vapor point region equilibrium . Sublimation curve T_c Temperature Solid/liquid pLiquid

P P P Diquid/vapor Vapor T_e P Vapor Va

Phase rule (degree of freedom) $F = 2 - \pi + N$

At triple point (F=0), on saturated lines (F=1)

To get liquid from vapor

1- cooling at constant pressure or,

University of Babylon /College Of Engineering Electrochemical Engineering Dept. Second Stage /Thermodynamics

2- compression at constant temperature

To get vapor from liquid

- 1- Heating at constant pressure or,
- 2- Expansion at constant temperate.

B-C saturated liquid curve , C-D saturated vapor curve , while the area under BCD curve two phase region

Single-Phase Region

For the regions of the diagram where a single phase exists, above figure (b) implies a relation connecting P, V, and T which may be expressed by the functional equation:

$$f(P,V,T)=0$$

As assumed volume as a function of pressure and temperature and take derivative V = V(T, P)

$$dV = \left(\frac{dV}{dT}\right)_P dT + \left(\frac{dV}{dP}\right)_T dP$$

The partial derivatives in this equation have definite physical meanings, and are related to two properties, commonly tabulated for liquids, and defined as follows

volume expansion : $\beta \equiv \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_P$

isothermal compressibility: $\kappa \equiv -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_{\mathrm{T}}$

- β and κ are function of temperature and pressure : f(P,T), for compressible fluid, (increase with temperature and decrease with pressure)
- β for water is deviated in range (0 4) $^{\circ}$ C
- it can be considered they are constant with small change in temperature and pressure
- β , $\kappa = 0$ for incompressible fluids

University of Babylon /College Of Engineering Electrochemical Engineering Dept. Second Stage /Thermodynamics

Combination the above equation lead to :
$$\frac{dV}{V} = \beta dT - \kappa dP$$

$$\ln \frac{V_2}{V_1} = \beta (T_2 - T_1) - \kappa (P_2 - P_1)$$

What ideal gas different from non ideal gas

Ideal gas	Non ideal
No force attraction between molecules	• There is a force attraction between
• Volume of molecules is very small	molecules
comparison with total volume	• Volume of molecules cannot negligible
• $P = 3$ bar or less	• P is more than 3 bar
• Equation of state is $PV = nRT$ or $PV^- = RT$	• There are many equations of state used for
• Compressibility factor $z = 1$	non ideal gas
	• z < 1