
Microprocessors Chapter 3 : Programming with 8086 Microprocessor

Operators in 8086

- Operator can be applied in the operand which uses the immediate data/address.
- Being active during assembling and no machine language code is generated.
- Different types of operators are:

1) Arithmetic: + , - , * , /
2) Logical : AND, OR, XOR, NOT
3) SHL and SHR: Shift during assembly
4) []: index
5) HIGH: returns higher byte of an expression
6) LOW: returns lower byte of an

expression. E.g. NUM EQU 1374 H

MOV AL HIGH Num ; ([AL] 13)
7) OFFSET: returns offset address of a variable
8) SEG: returns segment address of a variable
9) PTR: used with type specifications

BYTE, WORD, RWORD, DWORD, QWORD

E.g. INC BYTE PTR [BX]
10) Segment override

MOV AH, ES: [BX]
11) LENGTH: returns the size of the referred variable
12) SIZE: returns length times type

E.g.: BYTE VAR DB?

 WTABLE DW 10 DUP (?)

 MOV AX, TYPE BYTEVAR ; AX = 0001H

 MOV AX, TYPE WTABLE ; AX = 0002H

 MOV CX, LENGTH WTABLE ; CX = 000AH

 MOV CX, SIZE WTABLE ; CX = 0014H

Microprocessors lecture 4 : Programming with 8086 Microprocessor

Coding in Assembly language:
Assembly language programming language has taken its place in between the machine
language (low level) and the high level language.

- High level language’s one statement may generate many machine instructions.
- Low level language consists of either binary or hexadecimal operation. One symbolic

statement generates one machine level instructions.

Advantage of ALP
- They generate small and compact execution module.
- They have more control over hardware.
- They generate executable module and run faster.

Disadvantages of ALP:
- Machine dependent.
- Lengthy code
- Error prone (likely to generate errors).

Assembly language features:
The main features of ALP are program comments, reserved words, identifies, statements and
directives which provide the basic rules and framework for the language.

Program comments:
- The use of comments throughout a program can improve its clarity.
- It starts with semicolon (;) and terminates with a new line.
- E.g. ADD AX, BX ; Adds AX & BX

Reserved words:

- Certain names in assembly language are reserved for their own purpose to be used only
under special conditions and includes

- Instructions : Such as MOV and ADD (operations to execute)
- Directives: Such as END, SEGMENT (information to assembler)
- Operators: Such as FAR, SIZE
- Predefined symbols: such as @DATA, @ MODEL

Identifiers:
- An identifier (or symbol) is a name that applies to an item in the program that expects

to reference.
- Two types of identifiers are Name and Label.
- Name refers to the address of a data item such as NUM1 DB 5, COUNT DB 0
- Label refers to the address of an instruction.
- E. g: MAIN PROC FAR
- L1: ADD BL, 73

Microprocessors lecture 4 : Programming with 8086 Microprocessor

Statements:
- ALP consists of a set of statements with two types
- Instructions, e. g. MOV, ADD
- Directives, e. g. define a data item

 Identifiers operation operand comment
Directive: COUNT DB 1 ; initialize count
Instruction: L30: MOV AX, 0 ; assign AX with 0

Directives:
The directives are the number of statements that enables us to control the way in which the
source program assembles and lists. These statements called directives act only during the
assembly of program and generate no machine-executable code. The different types of
directives are:

1) The page and title listing directives:
The page and title directives help to control the format of a listing of an assembled
program. This is their only purpose and they have no effect on subsequent execution of
the program.

The page directive defines the maximum number of lines to list as a page and the
maximum number of characters as a line.

PAGE [Length] [Width]
Default : Page [50][80]

TITLE gives title and place the title on second line of each page of the
program. TITLE text [comment]

2) SEGMENT directive

It gives the start of a segment for stack, data and code.
Seg-name Segment *align+*combine+*‘class’+

Seg-name ENDS
- Segment name must be present, must be unique and must follow assembly language

naming conventions.
- An ENDS statement indicates the end of the segment.
- Align option indicates the boundary on which the segment is to begin; PARA is used to

align the segment on paragraph boundary.
- Combine option indicates whether to combine the segment with other segments when

they are linked after assembly. STACK, COMMON, PUBLIC, etc are combine types.
- Class option is used to group related segments when linking. The class code for code

segment, stack for stack segment and data for data segment.

3) PROC Directives
The code segment contains the executable code for a program, which consists of one or

more procedures, defined initially with the PROC directives and ended with the ENDP
directive.
PROC - name PROC [FAR/NEAR]

 11

Microprocessors lecture 4 : Programming with 8086 Microprocessor

…………….
…………….
…………….
PROC - name ENDP

- FAR is used for the first executing procedure and rest procedures call will be NEAR.
- Procedure should be within segment.

4) END Directive
- An END directive ends the entire program and appears as the last statement.
- ENDS directive ends a segment and ENDP directive ends a procedure. END PROC-Name

5) ASSUME Directive

- An .EXE program uses the SS register to address the stack, DS to address the data
segment and CS to address the code segment.

- Used in conventional full segment directives only.
- Assume directive is used to tell the assembler the purpose of each segment in the

program.
- Assume SS: Stack name, DS: Data Segname CS: codesegname

6) Processor directive
- Most assemblers assume that the source program is to run on a basic 8086 level

computer.
- Processor directive is used to notify the assembler that the instructions or features

introduced by the other processors are used in the program.
E.g. .386 - program for 386 protected mode.

7) Dn Directive (Defining data types)
Assembly language has directives to define data syntax [name] Dn expression
The Dn directive can be any one of the following:
DB Define byte 1 byte

DW Define word 2 bytes

DD Define double 4 bytes

DF defined farword 6 bytes

DQ Define quadword 8 bytes

DT Define 10 bytes 10 bytes

VAL1 DB 25

ARR DB 21, 23, 27, 53

MOV AL, ARR [2] or

MOV AL, ARR + 2 ; Moves 27 to AL register

8) The EQU directive

- It can be used to assign a name to constants.
- E.g. FACTOR EQU 12

Microprocessors lecture 4 : Programming with 8086 Microprocessor

- MOV BX, FACTOR ; MOV BX, 12

- It is short form of equivalent.
- Do not generate any data storage; instead the assembler uses the defined value to

substitute in.

9) DUP Directive
- It can be used to initialize several locations to

zero. e. g. SUM DW 4 DUP(0)
- Reserves four words starting at the offset sum in DS and initializes them to Zero.
- Also used to reserve several locations that need not be initialized. In this case (?) is used

with DUP directives.
E. g. PRICE DB 100 DUP(?)

- Reserves 100 bytes of uninitialized data space to an offset PRICE.

Program written in Conventional full segment directive

Page 60,132
TITLE SUM program to add two numbers
;---
STACK SEGMENT PARA STACK ‘Stack’
DW 32 DUP(0)
STACK ENDS ;----------------------------------

DATA SEG SEGMENT PARA ‘Data’
NUM1 DW 3291
NUM 2 DW 582
SUM DW? DATA
SEG ENDS
;--
CODE SEG SEGMENT PARA ‘Code’
MAIN PROC FAR

ASSUME SS: STACK, DS:DATASEG, CS:CODESEG
MOV AX, @DATA
MOV DS, AX
MOV AX, NUM1
ADD AX, NUM2
MOV AX, 4C00H
INT 21H

MAIN ENDP
CODESEG ENDS
END MAIN

Microprocessors lecture 4 : Programming with 8086 Microprocessor

Description for conventional program:

- STACK contains one entry, DW (define word), that defines 32 words initialized to zero,
an adequate size for small programs.

- DATASEG defines 3 words NUM1, NUM2 initialized with 3291 and 582 and sum

uninitialized.

- CODESEG contains the executable instructions for the program, PROC and ASSUME
generate no executable code.

- The ASSUME directive tells the assembler to perform these tasks.

- Assign STACK to SS register so that the processor uses the address in SS for addressing
STACK.

- Assign DATASEG to DS register so that the processor uses the address in DS for

addressing DATASEG.

- Assign CODESEG to the CS register so that the processor uses the address in CS for
addressing CODESEG.

When the loading a program for disk into memory for execution, the program loader
sets the correct segment addresses in SS and CS.

Program written using simplified segment directives:
.Model memory

model Memory model can be
TINY, SMALL, MEDIUM, COMPACT, LARGE, HUGE or
FLAT TINY for .com program

FLAT for program up to 4 GB

- Assume is automatically generated
.STACK [size in bytes]
Creates stack segment
.DATA: start of data segment
.CODE: start of code segment

- DS register can be initialized as
MOV AX, @DATA
MOV DS, AX

ALP written in simplified segment directives:
Page 60, 132
TITLE Sum program to add two numbers.
.MODEL SMALL
.STACK 64
.DATA

NUM1 DW 3241
NUM 2 DW 572

Microprocessors lecture 4 : Programming with 8086 Microprocessor

SUM DW ?

.CODE

MAIN PROC FAR

MOV AX, @ DATA ; set address of data segment in DS

MOV DS, AX

MOV AX, NUM1

ADD AX, NUM2

MOV SUM, AX

MOV AX, 4C00H ; End processing

INT 21H

MAIN ENDP ; End of procedure

END MAIN ; End of program

DOS Debug(TASM)
1) Save the code text in .ASM format and save it to the same folder where masm

and link files are stored.
2) Open dos mode and reach within that folder.

3) \> tasm filename.asm makes.obj
4) \> tlink filename makes .exe

5) \> filename.exe run the code

6) \> td filename.exe debug the code [use F7 and F8]

