
Microprocessors Chapter 3 : Programming with 8086 Microprocessor

lecture-3

Programming with 8086 microprocessor

Internal Architecture and Features of 8086 Microprocessor

Fig: Internal Block Diagram of 8086 Microprocessor

Features of 8086 microprocessor
- Intel 8086 is a widely used 16 bit microprocessor.
- The 8086 can directly address 1MB of memory.
- The internal architecture of the 8086 microprocessor is an example of register based

microprocessor and it uses segmented memory.
- It pre-fetches up to 6 instruction bytes from the memory and queues them in order to

speed up the instruction execution.

Microprocessors lecture 3 : Programming with 8086 Microprocessor

- It has data bus of width 16 bits and address bus of width 20 bits. So it always accesses a

16 bit word to or from memory.
- The 8086 microprocessor is divided internally into two separate units which are Bus

interface unit (BIU) and the execution unit (EU).
- The BIU fetches instructions, reads operands and write results.
- The EU executes instructions that have already been fetched by BIU so that instructions

fetch overlaps with execution.
- A 16 bit ALU in the EU maintains the MP status and control flags, manipulates general

register and instruction operands.

Bus Interface Unit(BIU) and its Components
The BIU sends out addresses, fetches instructions from memory reads data from
memory or ports and writes data to memory or ports. So it handles all transfers of data
and address on the buses for EU. It has main 2 parts instruction queue and segment
registers.

- The BIU can store up to 6 bytes of instructions with FIFO (First in First Out) manner in a
register set called a queue. When EU is ready for next instruction, it simply reads the
instruction from the queue in the BIU. This is done in order to speed up program
execution by overlapping instruction fetch with execution. This mechanism is known as
pipelining.

- The BIU contains a dedicated address, which is used to produce 20 bit address. Four
segment registers in the BIU are used to hold the upper 16 bits of the starting address of
four memory segments that the 8086 is working at a particular time. These are code
segment, data segment, stack segment and extra segment. The 8086’s 1 MB memory is
divided into segments up to 64KB each.

- Code segment register and instruction pointer (IP): The CS contains the base or start of

the current code segment. The IP contains the distance or offset from this address to
the next instruction byte to be fetched. Code segment address plus an offset value in
the IP indicates the address of an instruction to be fetched for execution.

- Data Segment
Data segment Contains the starting address of a program’s data segment. Instructions
use this address to locate data. This address plus an offset value in an instruction, causes
a reference to a specific byte location in the data segment.

- Stack segment (SS) and Stack Pointer (SP)

Stack segment Contains the starting address of a program’s stack segment. This
segment address plus an offset value in the stack pointer indicates the current word in
the stack being addressed.

Microprocessors lecture 3 : Programming with 8086 Microprocessor

- Extra Segment(ES)
It is used by some string (character data) to handle memory addressing. The string
instructions always use the ES and destination index (DI) to determine 20 bit physical
address.

Execution Unit (EU)
The EU decodes and executes the instructions. The EU contains arithmetic and logic
(ALU), a control unit, and a number of registers. These features provide for execution of
instructions and arithmetic and logical operations. It has nine 16 bit registers which are
AX, BX, CX, DX, SP, BP, SI, DI and flag. First four can be used as 8 bit register (AH, Al, BH,
BL, CH, DH, DL)

- AX Register

AX register is called 16 bit accumulator and AL is called 8 bit accumulator. The I/O (IN or
OUT) instructions always use the AX or AL for inputting/Outputting 16 or 8 bit data from
or to I/O port.

- BX Register

BX is known as the base register since it is the only general purpose register that can be
used as an index to extend addressing. The BX register is similar to the 8085’s H, L
register. BX can also be combined with DI or SI as C base register for special addressing.

- CX register:

The CX register is known as the counter register because some instructions such as
SHIFT, ROTATE and LOOP use the contents of CX as a Counter.

- DX register:

The DX register is known as data register. Some I/O operations require its use and
multiply and divide operations that involve large values assume the use of DX and AX
together as a pair. DX comprises the rightmost 16 bits of the 32-bit EDX.

- Stack Pointer (SP) and Base Pointer (BP):

Both are used to access data in the stack segment. The SP is used as an offset from the
current stack segment during execution of instructions. The SP’s contents are
automatically updated (increment/decrement) during execution of a POP and PUSH
instructions.
The BP contains the offset address in the current stack segment. This offset is used by
instructions utilizing the based addressing mode.

- Index register:

The two index registers SI (Source index) and DI (Destination Index) are used in indexed
addressing. The instructions that process data strings use the SI and DI index register
together with DS and ES respectively, in order to distinguish between the source and
destination address.

Microprocessors lecture 3 : Programming with 8086 Microprocessor

- Flag register:
The 8086 has nine 1 bit flags. Out of 9 six are status and three are control flags. The
control bits in the flag register can be set or reset by the programmer.

 O D I T S Z A P C

D15 D0

- O- Overflow flag This flag is set if an arithmetic overflow occurs, i.e. if the result of a

signed operation is large enough to be accommodated in a destination register.
- D-Direction Flag This is used by string manipulation instructions. If this flag bit is ‘0’ , the

string is processed beginning from the lowest address to the higher address, i.e. auto
incrementing mode otherwise the string is processed from the highest address towards
the lowest address, i.e. autodecrementing mode.

- I-Interrupt flag If this flag is set the maskable interrupts are recognized by the CPU,
otherwise they are ignored.

- T- Trap flag If this flag is set the processor enters the single step execution mode. In
other words, a trap interrupt is generated after execution of each instruction. The
processor executes the current instruction and the control is transferred to the Trap
interrupt service routine.

- S - Sign flag: This flag is set when the result of any computation is negative. For signed
computations, the sign flag equals the MSB of the result.

- Z- Zero This flag is set when the result of the computation is or comparison performed
by the previous instruction is zero. 1 for zero result, 0 fir nonzero result

- A- Auxiliary Carry This is set if there is a carry from the lowest nibble, i.e. bit three
during the addition or borrow for the lowest nibble i.e. bit three, during subtraction.

- P- Parity flag This flag is set to 1 if the lower byte of the result contains even number of
1s otherwise reset.

- C-Carry flag This flag is set when there is a carry out of MSB in case of addition or a
borrow in case of subtraction.

SEGMENT AND OFFSET ADDRESS:

- Segments are special areas defined in a program for containing the code, data and stack.
A segment begins on a paragraph boundary. A segment register is of 16 bits in size and
contains the starting address of a segment.

- A segment begins on a paragraph boundary, which is an address divisible by decimal 16
or hex 10. Consider a DS that begins at location 038EOH. In all cases, the rightmost hex
digit is zero, the computer designers decided that it would be unnecessary to store the
zero the zero digit in the segment register. Thus 038E0H is stores in register as 038EH.

- The distance in bytes from the segment address to another location within the segment
is expressed as an offset or displacement. Suppose the offset of 0032H for above
example of data segment. Processor combines the address of the data segment with the
offset as:

Microprocessors lecture 3 : Programming with 8086 Microprocessor

- SA: OA (segment address: offset

address) 038E: 0032 H = 038E * 10 +0032
= 038EO + 0032

Physical address = 03912H

Instructions in 8086

1) Arithmetic Instructions

a) ADD reg8 /mem8 , reg8/mem8/ Immediate8

ADD reg16/mem16 , reg16/ mem16/ Immediate16
E.g. ADD AH, 15 ; It adds binary number

ADD AH, NUM1 ADD Al, [BX]
ADD [BX], CH/CX ADD AX,[BX]

b) ADC: Addition with Carry
ADC reg/ mem, reg/mem/Immediate data

c) SUB: Subtract 8 bit or 16 bit binary numbers

SUB reg/mem, reg/mem/Immediate

d) SBB: Subtract with borrow

SBB reg/mem, reg/mem/Immediate

e) MUL : unsigned multiplication

MUL reg8/mem8 (8 bit accumulator – AL)

MUL reg16/ mem16 (16 bit accumulator-Ax)

E.g. MUL R8 R8 AL AX (16 bit result)

MUL R16 R16 AL DX:AX (32 bit result)
IMUL – signed multiplication

Same operation as MUL but takes sign into account

f) DIV reg/mem

E.g. DIV R8 AX/R8 (Remainder AH) & (Q AL)

DIV R16 DX:AX/R16 (R DX) & (Q AX)
IDIV- Signed division

Same operation as DIV but takes sign into account.

g) INC/DEC (Increment/Decrement by
1) INC/DEC reg./mem. (8 bit or 16bit)
E.g. INC AL DEC BX

INC NUM1

 5

Microprocessors lecture 3 : Programming with 8086 Microprocessor

h) NEG- Negate (2’s complement)
i) ASCII-BCD Conversion

AAA: ASCII Adjust after addition
AAS: ASCII Adjust after subtraction
AAM: Adjust after multiplication
AAD: Adjust after division
DAA: Decimal adjust after addition
DAS: Decimal adjust after subtraction

2) Logical/shifting/comparison instructions

a) Logical
AND/OR/XOR reg/mem,
reg/mem/immediate NOT reg/mem
E. g. AND AL, AH

XOR [BX], CL

b) Rotation
ROL- rotate left, ROR-rotate right
E.g. ROL AX, 1 ; rotated by 1

 ROL AX, CL ; if we need to rotate more than one bit
RCL-rotate left through carry

RCR-rotate right through carry

E.g. RCL AX, 1

 RCL AX, CL ; Only CL can be used

c) Shifting
SHL -logical shift left
SHR - logical shift right
Shifts bit in true direction and fills zero in vacant place
E.g. SHL reg/mem, 1/CL
arithmetic shift left
SAR- arithmetic shift right
Shifts bit/word in true direction, in former case place zero in vacant place and in
later case place previous sign in vacant place.
E.g. 1 011010 [1 11011010

Microprocessors lecture 3 : Programming with 8086 Microprocessor

d) Comparison

 CMP –compare

 CMP reg/mem, reg/mem/immediate

 E.g. CMP BH, AL

 Operand1 Operand 2 CF SF ZF

 0 0 0

 0 0 1

 1 1 0

 TEST: test bits (AND operation)

 TEST reg/mem, reg/mem/immediate

 3) Data Transfer Instructions:

MOV reg./mem , reg./mem./immediate

LDS: Load data segment register

LEA: load effective address

LES: Load extra segment register

LSS: Load stack segment register

E.g. LEA BX, ARR = MOV BX, OFFSET ARR

LDS BX, NUM1

 Segment address DS

 Offset address BX

XCHG reg/mem, reg/mem

E.g. XCHG AX, BX

 XCHG AL, BL

 XCHG CL,[BX]

IN AL, DX ; DX: Port address, AH also in AL

OUT DX, AL/AH

4) Flag Operation
CLC: Clear carry flag
CLD: Clear direction flag
CLI: Clear interrupt flag
STC: Set Carry flag
STD: Set direction flag
STI: Set Interrupt flag
CMC: Complement Carry flag
LAHF: Load AH from flags (lower
byte) SAHF: Store AH to flags
PUSHF: Push flags into stack
POPF: Pop flags off stack

Microprocessors lecture 4 : Programming with 8086 Microprocessor

5) STACK Operations
PUSH reg16

POP reg16

6) Looping instruction (CX is automatically used as a counter)
LOOP: loop until complete
LOOPE: Loop while equal
LOOPZ: loop while zero
LOOPNE: loop while not equal
LOOPNZ: loop while not zero

7) Branching instruction

a) Conditional
JA: Jump if Above
JAE: Jump if above/equal
JB: Jump if below
JBE: Jump if below/equal
JC: Jump if carry
JNC: Jump if no carry
JE: Jump if equal JNE:
Jump if no equal JZ:
Jump if zero
JNZ: Jump if no zero
JG: Jump if greater
JNG: Jump if no greater
JL: Jump if less
JNL: Jump if no less
JO: jump if overflow
JS: Jump if sign JNS:
Jump if no sign JP:
jump if plus
JPE: Jump if parity even
JNP: Jump if no parity
JPO: Jump if parity odd

b) Unconditional

CALL: call a procedure RET: Return

INT: Interrupt IRET: interrupt return
JMP: Unconditional Jump RETN/RETF: Return near/Far

8) Type conversion

CBW: Convert byte to word
CWD: Convert word to double word

Microprocessors lecture 4 : Programming with 8086 Microprocessor

AX DX: AX

 9) String instructions

a) MOVS/ MOVSB/MOVSW ; Move string

 DS: SI source

 DS: DI destination

 CX: String length

b) CMPS/ CMPSB/CMPW ; Compare string

c) LODS /LODSB/LODW ; Load string

d) REP ; Repeat string

ng and DI is used to point to the first byte or word of the destination string, when string
instruction is executed. The SI or DI is automatically incremented or decremented to
point to the next byte or word depending on the direction flag (DF).
E.g. MOVS, MOVSB, MOVSW

Examples:

TITLE Program to add ten numbers

.MODEL SMALL

.STACK 64

.DATA
ARR DB 73, 91, 12, 15, 79, 94, 55,
89 SUM DW ?

.CODE
MAIN PROC FAR

MOV AX, @DATA
MOV DS, AX

Microprocessors lecture 6 : Programming with 8086 Microprocessor

MOV CX, 10

MOV AX, 0

LEA BX, ARR
L2: ADD Al, [BX]

JNC L1
INC AH

L1: INC BX
LOOP L2
MOV SUM, AX

MOV AX, 4C00H
INT 21H

MAIN ENDP
END MAIN

