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Differentiation Rules

This section introduces a few rules that allow us to differentiate a great variety of func-
tions. By proving these rules here, we can differentiate functions without having to apply
the definition of the derivative each time.

Powers, Multiples, Sums, and Differences

The first rule of differentiation is that the derivative of every constant function is zero.

3.2

RULE 1 Derivative of a Constant Function
If ƒ has the constant value then

dƒ
dx

=

d
dx

 scd = 0.

ƒsxd = c ,

EXAMPLE 1

If ƒ has the constant value then

Similarly,

Proof of Rule 1 We apply the definition of derivative to the function whose
outputs have the constant value c (Figure 3.8). At every value of x, we find that

ƒ¿sxd = lim
h:0

 
ƒsx + hd - ƒsxd

h
= lim

h:0
 
c - c

h
= lim

h:0
0 = 0.

ƒsxd = c ,

d
dx

 a- p
2
b = 0 and d

dx
 a23b = 0.

df
dx

=

d
dx

 s8d = 0.

ƒsxd = 8,

x

y

0 x

c

h

y � c
(x � h, c)(x, c)

x � h

FIGURE 3.8 The rule is
another way to say that the values of
constant functions never change and that
the slope of a horizontal line is zero at
every point.

sd>dxdscd = 0
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The second rule tells how to differentiate if n is a positive integer.xn

160 Chapter 3: Differentiation

RULE 2 Power Rule for Positive Integers
If n is a positive integer, then

d
dx

 xn
= nxn - 1 .

To apply the Power Rule, we subtract 1 from the original exponent (n) and multiply
the result by n.

EXAMPLE 2 Interpreting Rule 2

ƒ x

1 2x

First Proof of Rule 2 The formula

can be verified by multiplying out the right-hand side. Then from the alternative form for
the definition of the derivative,

Second Proof of Rule 2 If then Since n is a positive
integer, we can expand by the Binomial Theorem to get

The third rule says that when a differentiable function is multiplied by a constant, its
derivative is multiplied by the same constant.

 = nxn - 1

 = lim
h:0

 cnxn - 1
+

nsn - 1d
2

 xn - 2h +
Á

+ nxhn - 2
+ hn - 1 d

 = lim
h:0

 
nxn - 1h +

nsn - 1d
2

 xn - 2h2
+

Á
+ nxhn - 1

+ hn

h

 = lim
h:0

 

cxn
+ nxn - 1h +

nsn - 1d
2

 xn - 2h2
+

Á
+ nxhn - 1

+ hn d - xn

h

 ƒ¿sxd = lim
h:0

 
ƒsx + hd - ƒsxd

h
= lim

h:0
 
sx + hdn

- xn

h

sx + hdn
ƒsx + hd = sx + hdn .ƒsxd = xn ,

 = nxn - 1

 = lim
z:x

szn - 1
+ zn - 2x +

Á
+ zxn - 2

+ xn - 1d

 ƒ¿sxd = lim
z:x

 
ƒszd - ƒsxd

z - x = lim
z:x

 
zn

- xn

z - x

zn
- xn

= sz - xdszn - 1
+ zn - 2 x +

Á
+ zxn - 2

+ xn - 1d

Á4x33x2ƒ¿

Áx4x3x2

HISTORICAL BIOGRAPHY

Richard Courant
(1888–1972)
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In particular, if n is a positive integer, then

EXAMPLE 3

(a) The derivative formula

says that if we rescale the graph of by multiplying each y-coordinate by 3,
then we multiply the slope at each point by 3 (Figure 3.9).

(b) A useful special case

The derivative of the negative of a differentiable function u is the negative of the func-
tion’s derivative. Rule 3 with gives

Proof of Rule 3

Limit property

u is differentiable.

The next rule says that the derivative of the sum of two differentiable functions is the
sum of their derivatives.

 = c 
du
dx

 = c lim
h:0

 
usx + hd - usxd

h

 
d
dx

 cu = lim
h:0

 
cusx + hd - cusxd

h

d
dx

 s -ud =

d
dx

 s -1 # ud = -1 # d
dx

 sud = -

du
dx

.

c = -1

y = x2

d
dx

 s3x2d = 3 # 2x = 6x

d
dx

 scxnd = cnxn - 1 .
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RULE 3 Constant Multiple Rule
If u is a differentiable function of x, and c is a constant, then

d
dx

 scud = c 
du
dx

.

RULE 4 Derivative Sum Rule
If u and y are differentiable functions of x, then their sum is differentiable
at every point where u and y are both differentiable. At such points,

d
dx

 su + yd =

du
dx

+

dy
dx

.

u + y

x

y

0 1

1
(1, 1)

2

2

3 (1, 3)
 

Slope

Slope
Slope � 2x

� 2(1) � 2

y � x2

y � 3x2

Slope � 3(2x)
� 6x
� 6(1) � 6

FIGURE 3.9 The graphs of and
Tripling the y-coordinates triples

the slope (Example 3).
y = 3x2 .

y = x2

Derivative definition
with ƒsxd = cusxd

Denoting Functions by u and Y
The functions we are working with
when we need a differentiation formula
are likely to be denoted by letters like ƒ
and g. When we apply the formula, we
do not want to find it using these same
letters in some other way. To guard
against this problem, we denote the
functions in differentiation rules by
letters like u and y that are not likely to
be already in use.
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EXAMPLE 4 Derivative of a Sum

Proof of Rule 4 We apply the definition of derivative to 

Combining the Sum Rule with the Constant Multiple Rule gives the Difference Rule,
which says that the derivative of a difference of differentiable functions is the difference of
their derivatives.

The Sum Rule also extends to sums of more than two functions, as long as there are
only finitely many functions in the sum. If are differentiable at x, then so is

and

EXAMPLE 5 Derivative of a Polynomial

Notice that we can differentiate any polynomial term by term, the way we differenti-
ated the polynomial in Example 5. All polynomials are differentiable everywhere.

Proof of the Sum Rule for Sums of More Than Two Functions We prove the statement

by mathematical induction (see Appendix 1). The statement is true for as was just
proved. This is Step 1 of the induction proof.

n = 2,

d
dx

 su1 + u2 +
Á

+ und =

du1

dx
+

du2

dx
+

Á
+

dun

dx

 = 3x2
+

8
3

 x - 5

 = 3x2
+

4
3

# 2x - 5 + 0

 
dy
dx

=

d
dx

 x3
+

d
dx

 a4
3

 x2b -

d
dx

 s5xd +

d
dx

 s1d

 y = x3
+

4
3

 x2
- 5x + 1

d
dx

 su1 + u2 +
Á

+ und =

du1

dx
+

du2

dx
+

Á
+

dun

dx
.

u1 + u2 +
Á

+ un ,
u1 , u2 , Á , un

d
dx

 su - yd =

d
dx

 [u + s -1dy] =

du
dx

+ s -1d 
dy
dx

=

du
dx

-

dy
dx

 = lim
h:0

 
usx + hd - usxd

h
+ lim

h:0
 
ysx + hd - ysxd

h
=

du
dx

+

dy
dx

.

 = lim
h:0

 cusx + hd - usxd
h

+

ysx + hd - ysxd
h

d
 
d
dx

 [usxd + ysxd] = lim
h:0

 
[usx + hd + ysx + hd] - [usxd + ysxd]

h

ƒsxd = usxd + ysxd :

 = 4x3
+ 12

 
dy
dx

=

d
dx

 sx4d +

d
dx

 s12xd

 y = x4
+ 12x
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Step 2 is to show that if the statement is true for any positive integer where
then it is also true for So suppose that

(1)

Then

Eq. (1)

With these steps verified, the mathematical induction principle now guarantees the
Sum Rule for every integer 

EXAMPLE 6 Finding Horizontal Tangents

Does the curve have any horizontal tangents? If so, where?

Solution The horizontal tangents, if any, occur where the slope is zero. We have,

Now solve the equation 

The curve has horizontal tangents at and The corre-
sponding points on the curve are (0, 2), (1, 1) and See Figure 3.10.

Products and Quotients

While the derivative of the sum of two functions is the sum of their derivatives, the deriva-
tive of the product of two functions is not the product of their derivatives. For instance,

The derivative of a product of two functions is the sum of two products, as we now explain.

d
dx

 sx # xd =

d
dx

 sx2d = 2x, while d
dx

 sxd # d
dx

 sxd = 1 # 1 = 1.

s -1, 1d .
-1.x = 0, 1 ,y = x4

- 2x2
+ 2

 x = 0, 1, -1.

 4xsx2
- 1d = 0

 4x3
- 4x = 0

dy
dx

= 0 for x :

dy
dx

=

d
dx

 sx4
- 2x2

+ 2d = 4x3
- 4x .

dy>dx

y = x4
- 2x2

+ 2

n Ú 2.

 =

du1

dx
+

du2

dx
+

Á
+

duk

dx
+

duk + 1

dx
.

 =

d
dx

 su1 + u2 +
Á

+ ukd +

duk + 1

dx

d
dx

 (u1 + u2 +
Á

+ uk + uk + 1)

d
dx

 su1 + u2 +
Á

+ ukd =

du1

dx
+

du2

dx
+

Á
+

duk

dx
. 

n = k + 1.k Ú n0 = 2,
n = k ,
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(++++)++++*

Call the function
defined by this sum u.

()*

Call this
function y.

Rule 4 for 
d
dx

 su + yd

x

y

0 1–1

(1, 1)(–1, 1)
1

(0, 2)

y � x4 � 2x2 � 2

FIGURE 3.10 The curve
and its horizontal

tangents (Example 6).
y = x4

- 2x2
+ 2

RULE 5 Derivative Product Rule
If u and y are differentiable at x, then so is their product uy, and

d
dx

 suyd = u 
dy
dx

+ y 
du
dx

.
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The derivative of the product uy is u times the derivative of y plus y times the deriva-
tive of u. In prime notation, In function notation,

EXAMPLE 7 Using the Product Rule

Find the derivative of

Solution We apply the Product Rule with and 

Proof of Rule 5

To change this fraction into an equivalent one that contains difference quotients for the de-
rivatives of u and y, we subtract and add in the numerator:

As h approaches zero, approaches u(x) because u, being differentiable at x, is con-
tinuous at x. The two fractions approach the values of at x and at x. In short,

In the following example, we have only numerical values with which to work.

EXAMPLE 8 Derivative from Numerical Values

Let be the product of the functions u and y. Find if

Solution From the Product Rule, in the form

y¿ = suyd¿ = uy¿ + yu¿ ,

us2d = 3, u¿s2d = -4, ys2d = 1, and y¿s2d = 2.

y¿s2dy = uy

d
dx

 suyd = u 
dy
dx

+ y 
du
dx

.

du>dxdy>dx
usx + hd

 = lim
h:0

usx + hd # lim
h:0

 
ysx + hd - ysxd

h
+ ysxd # lim

h:0
 
usx + hd - usxd

h
.

 = lim
h:0

 cusx + hd 
ysx + hd - ysxd

h
+ ysxd 

usx + hd - usxd
h

d
 
d
dx

 suyd = lim
h:0

 
usx + hdysx + hd - usx + hdysxd + usx + hdysxd - usxdysxd

h

usx + hdysxd

d
dx

 suyd = lim
h:0

 
usx + hdysx + hd - usxdysxd

h

 = 1 -
2
x3 .

 = 2 -
1
x3 - 1 -

1
x3

 
d
dx

 c1x  ax2
+

1
x b d =

1
x  a2x -

1
x2 b + ax2

+
1
x b a- 1

x2 b
y = x2

+ s1>xd :u = 1>x
y =

1
x  ax2

+
1
x  b .

d
dx

 [ƒsxdg sxd] = ƒsxdg¿sxd + g sxdƒ¿sxd .

suyd¿ = uy¿ + yu¿ .

164 Chapter 3: Differentiation

Example 3, Section 2.7.

d
dx

 a1x b = -

1

x2
 by

d
dx

 suyd = u 
dy
dx

+ y 
du
dx

, and

Picturing the Product Rule
If u(x) and y(x) are positive and
increase when x increases, and if h 7 0,

0

y(x � h)

y(x)

�y

u(x)y(x)

u(x) �y �u �y

y(x) �u

u(x � h)u(x)
�u

then the total shaded area in the picture
is

Dividing both sides of this equation by
h gives

As 

leaving

d
dx

 suyd = u 
dy
dx

+ y 
du
dx

.

¢u # ¢y

h
: 0 # dy

dx
= 0,

h : 0+ ,

-  ¢u 
¢y

h
.

=  usx + hd 
¢y

h
+ ysx + hd 

¢u
h

usx + hdysx + hd - usxdysxd
h

¢u -  ¢u¢y .
=  usx + hd ¢y + ysx + hd
usx + hdysx + hd - usxdysxd
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we have

EXAMPLE 9 Differentiating a Product in Two Ways

Find the derivative of 

Solution

(a) From the Product Rule with and we find

(b) This particular product can be differentiated as well (perhaps better) by multiplying
out the original expression for y and differentiating the resulting polynomial:

This is in agreement with our first calculation.

Just as the derivative of the product of two differentiable functions is not the product of
their derivatives, the derivative of the quotient of two functions is not the quotient of their
derivatives. What happens instead is the Quotient Rule.

 
dy
dx

= 5x4
+ 3x2

+ 6x .

 y = sx2
+ 1dsx3

+ 3d = x5
+ x3

+ 3x2
+ 3

 = 5x4
+ 3x2

+ 6x .

 = 3x4
+ 3x2

+ 2x4
+ 6x

 
d
dx

 C Ax2
+ 1 B Ax3

+ 3 B D = sx2
+ 1ds3x2d + sx3

+ 3ds2xd

y = x3
+ 3,u = x2

+ 1

y = sx2
+ 1dsx3

+ 3d .

 = s3ds2d + s1ds -4d = 6 - 4 = 2.

 y¿s2d = us2dy¿s2d + ys2du¿s2d
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RULE 6 Derivative Quotient Rule
If u and y are differentiable at x and if then the quotient is differ-
entiable at x, and

d
dx

 auy b =

y 
du
dx

- u 
dy
dx

y2 .

u>yysxd Z 0,

In function notation,

EXAMPLE 10 Using the Quotient Rule

Find the derivative of

y =

t2
- 1

t2
+ 1

.

d
dx

 c ƒsxd
g sxd

d =

g sxdƒ¿sxd - ƒsxdg¿sxd
g2sxd

.
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Solution
We apply the Quotient Rule with and 

Proof of Rule 6

To change the last fraction into an equivalent one that contains the difference quotients for
the derivatives of u and y, we subtract and add y(x)u(x) in the numerator. We then get

Taking the limit in the numerator and denominator now gives the Quotient Rule.

Negative Integer Powers of x

The Power Rule for negative integers is the same as the rule for positive integers.

 = lim
h:0

 
ysxd 

usx + hd - usxd
h

- usxd 
ysx + hd - ysxd

h
ysx + hdysxd

 .

 
d
dx

 auy b = lim
h:0

 
ysxdusx + hd - ysxdusxd + ysxdusxd - usxdysx + hd

hysx + hdysxd

 = lim
h:0

 
ysxdusx + hd - usxdysx + hd

hysx + hdysxd

 
d
dx

 auy b = lim
h:0

 

usx + hd
ysx + hd

-

usxd
ysxd

h

 =

4t
st2

+ 1d2 .

 =

2t3
+ 2t - 2t3

+ 2t
st2

+ 1d2

d
dt

 auy b =

ysdu>dtd - usdy>dtd

y2
 
dy
dt

=

st2
+ 1d # 2t - st2

- 1d # 2t

st2
+ 1d2

y = t2
+ 1:u = t2

- 1
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RULE 7 Power Rule for Negative Integers
If n is a negative integer and then

d
dx

 sxnd = nxn - 1 .

x Z 0,

EXAMPLE 11

(a) Agrees with Example 3, Section 2.7

(b)
d
dx

 a 4
x3 b = 4 

d
dx

 sx-3d = 4s -3dx-4
= -

12
x4

d
dx

 a1x b =

d
dx

 sx-1d = s -1dx-2
= -

1
x2
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Proof of Rule 7 The proof uses the Quotient Rule. If n is a negative integer, then
where m is a positive integer. Hence, and

Quotient Rule with and 

Since 

Since 

EXAMPLE 12 Tangent to a Curve

Find an equation for the tangent to the curve

at the point (1, 3) (Figure 3.11).

Solution The slope of the curve is

The slope at is

The line through (1, 3) with slope is

Point-slope equation

The choice of which rules to use in solving a differentiation problem can make a dif-
ference in how much work you have to do. Here is an example.

EXAMPLE 13 Choosing Which Rule to Use

Rather than using the Quotient Rule to find the derivative of

expand the numerator and divide by 

y =

sx - 1dsx2
- 2xd

x4 =

x3
- 3x2

+ 2x
x4 = x-1

- 3x-2
+ 2x-3 .

x4 :

y =

sx - 1dsx2
- 2xd

x4 ,

 y = -x + 4.

 y = -x + 1 + 3

 y - 3 = s -1dsx - 1d

m = -1

dy
dx
`
x = 1

= c1 -
2
x2 d

x = 1
= 1 - 2 = -1.

x = 1

dy
dx

=

d
dx

 sxd + 2 
d
dx

 a1x b = 1 + 2 a- 1
x2 b = 1 -

2
x2 .

y = x +
2
x

-m = n = nxn - 1 .

 = -mx-m - 1

m 7 0, 
d
dx

 sxmd = mxm - 1 =

0 - mxm - 1

x2m

y = xmu = 1 =

xm # d
dx

 A1 B - 1 # d
dx

 Axm B
sxmd2

 
d
dx

 sxnd =

d
dx

 a 1
xm b

xn
= x-m

= 1>xm ,n = -m ,
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x

y

0

1

1 2

2

3

3

4

(1, 3)

y � –x � 4

y � x � 2
x

FIGURE 3.11 The tangent to the curve
at (1, 3) in Example 12.

The curve has a third-quadrant portion
not shown here. We see how to graph
functions like this one in Chapter 4.

y = x + s2>xd
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Then use the Sum and Power Rules:

Second- and Higher-Order Derivatives

If is a differentiable function, then its derivative is also a function. If is
also differentiable, then we can differentiate to get a new function of x denoted by 
So The function is called the second derivative of ƒ because it is the deriv-
ative of the first derivative. Notationally,

The symbol means the operation of differentiation is performed twice.
If then and we have

Thus 

If is differentiable, its derivative, is the third derivative
of y with respect to x. The names continue as you imagine, with

denoting the nth derivative of y with respect to x for any positive integer n.
We can interpret the second derivative as the rate of change of the slope of the tangent

to the graph of at each point. You will see in the next chapter that the second de-
rivative reveals whether the graph bends upward or downward from the tangent line as we
move off the point of tangency. In the next section, we interpret both the second and third
derivatives in terms of motion along a straight line.

EXAMPLE 14 Finding Higher Derivatives

The first four derivatives of are

First derivative:

Second derivative:

Third derivative:

Fourth derivative:

The function has derivatives of all orders, the fifth and later derivatives all being zero.

y s4d
= 0.

y‡ = 6

y– = 6x - 6

y¿ = 3x2
- 6x

y = x3
- 3x2

+ 2

y = ƒsxd

y snd
=

d
dx

 y sn - 1d
=

dny

dxn = Dny

y‡ = dy–>dx = d3y>dx3y–

D2 Ax6 B = 30x4 .

y– =

dy¿

dx
=

d
dx

 A6x5 B = 30x4 .

y¿ = 6x5y = x6 ,
D2

ƒ–sxd =

d2y

dx2 =

d
dx

 ady
dx
b =

dy¿

dx
= y– = D2sƒdsxd = Dx

2 ƒsxd .

ƒ–ƒ– = sƒ¿d¿ .
ƒ– .ƒ¿

ƒ¿ƒ¿sxdy = ƒsxd

 = -
1
x2 +

6
x3 -

6
x4 .

 
dy
dx

= -x-2
- 3s -2dx-3

+ 2s -3dx-4
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How to Read the Symbols for
Derivatives

“y prime”
“y double prime”

“d squared y dx squared”

“y triple prime”
“y super n”

“d to the n of y by dx to the n”

“D to the n”Dn

dny

dxn

y snd
y‡

d2y

dx2

y–

y¿
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3.2 Differentiation Rules 169

EXERCISES 3.2

Derivative Calculations
In Exercises 1–12, find the first and second derivatives.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

In Exercises 13–16, find (a) by applying the Product Rule and
(b) by multiplying the factors to produce a sum of simpler terms to
differentiate.

13. 14.

15. 16.

Find the derivatives of the functions in Exercises 17–28.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

Find the derivatives of all orders of the functions in Exercises 29 and
30.

29. 30.

Find the first and second derivatives of the functions in Exercises
31–38.

31. 32.

33. 34.

35. 36. w = sz + 1dsz - 1dsz2
+ 1dw = a1 + 3z

3z
b s3 - zd

u =

sx2
+ xdsx2

- x + 1d
x4r =

su - 1dsu2
+ u + 1d
u3

s =

t2
+ 5t - 1

t2y =

x3
+ 7
x

y =

x5

120
y =

x4

2
-

3
2

 x2
- x

y =

sx + 1dsx + 2d
sx - 1dsx - 2d

y =

1
sx2

- 1dsx2
+ x + 1d

r = 2 a 12u + 2uby =

1 + x - 41x
x

u =

5x + 1
21x

ƒssd =

1s - 11s + 1

w = s2x - 7d-1sx + 5dy = s1 - tds1 + t2d-1

ƒstd =

t2
- 1

t2
+ t - 2

g sxd =

x2
- 4

x + 0.5

z =

2x + 1
x2

- 1
y =

2x + 5
3x - 2

y = ax +

1
x b ax -

1
x + 1by = sx2

+ 1d ax + 5 +

1
x b

y = sx - 1dsx2
+ x + 1dy = s3 - x2dsx3

- x + 1d

y¿

r =

12
u

-

4
u3 +

1
u4r =

1
3s2 -

5
2s

y = 4 - 2x - x-3y = 6x2
- 10x - 5x-2

s = -2t -1
+

4
t2w = 3z-2

-

1
z

y =

x3

3
+

x2

2
+

x
4

y =

4x3

3
- x

w = 3z7
- 7z3

+ 21z2s = 5t3
- 3t5

y = x2
+ x + 8y = -x2

+ 3

37. 38.

Using Numerical Values
39. Suppose u and y are functions of x that are differentiable at 

and that

Find the values of the following derivatives at 

a. b. c. d.

40. Suppose u and y are differentiable functions of x and that

Find the values of the following derivatives at 

a. b. c. d.

Slopes and Tangents
41. a. Normal to a curve Find an equation for the line perpendicular

to the tangent to the curve at the point (2, 1).

b. Smallest slope What is the smallest slope on the curve? At
what point on the curve does the curve have this slope?

c. Tangents having specified slope Find equations for the
tangents to the curve at the points where the slope of the
curve is 8.

42. a. Horizontal tangents Find equations for the horizontal tan-
gents to the curve Also find equations for
the lines that are perpendicular to these tangents at the points
of tangency.

b. Smallest slope What is the smallest slope on the curve? At
what point on the curve does the curve have this slope? Find
an equation for the line that is perpendicular to the curve’s
tangent at this point.

43. Find the tangents to Newton’s serpentine (graphed here) at the ori-
gin and the point (1, 2).

x

y

0

1

1 2

2
(1, 2)

3 4

y � 4x
x2 � 1

y = x3
- 3x - 2.

y = x3
- 4x + 1

d
dx

 s7y - 2udd
dx

 ayu bd
dx

 auy bd
dx

 suyd

x = 1.

us1d = 2, u¿s1d = 0, ys1d = 5, y¿s1d = -1.

d
dx

 s7y - 2udd
dx

 ayu bd
dx

 auy bd
dx

 suyd

x = 0.

us0d = 5, u¿s0d = -3, ys0d = -1, y¿s0d = 2.

x = 0

p =

q2
+ 3

sq - 1d3
+ sq + 1d3p = aq2

+ 3

12q
b aq4

- 1

q3 b

4100 AWL/Thomas_ch03p147-243  8/19/04  11:16 AM  Page 169

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html
tcu0302a.html
tcu0302a.html
tcu0302b.html
tcu0302b.html
tcu0302c.html
tcu0302c.html
tcu0302d.html
tcu0302d.html
tcu0302e.html
tcu0302e.html
tcu0302e.html
tcu0302e.html
tcu0302f.html
tcu0302f.html
tcu0302g.html
tcu0302g.html


44. Find the tangent to the Witch of Agnesi (graphed here) at the point
(2, 1).

45. Quadratic tangent to identity function The curve 
passes through the point (1, 2) and is tangent to the

line at the origin. Find a, b, and c.

46. Quadratics having a common tangent The curves 
and have a common tangent line at

the point (1, 0). Find a, b, and c.

47. a. Find an equation for the line that is tangent to the curve
at the point 

b. Graph the curve and tangent line together. The tangent
intersects the curve at another point. Use Zoom and Trace to
estimate the point’s coordinates.

c. Confirm your estimates of the coordinates of the second
intersection point by solving the equations for the curve and
tangent simultaneously (Solver key).

48. a. Find an equation for the line that is tangent to the curve
at the origin.

b. Graph the curve and tangent together. The tangent intersects
the curve at another point. Use Zoom and Trace to estimate
the point’s coordinates.

c. Confirm your estimates of the coordinates of the second
intersection point by solving the equations for the curve and
tangent simultaneously (Solver key).

Theory and Examples
49. The general polynomial of degree n has the form

where Find 

50. The body’s reaction to medicine The reaction of the body to a
dose of medicine can sometimes be represented by an equation of
the form

where C is a positive constant and M is the amount of medicine
absorbed in the blood. If the reaction is a change in blood pres-
sure, R is measured in millimeters of mercury. If the reaction is a
change in temperature, R is measured in degrees, and so on.

Find . This derivative, as a function of M, is called the
sensitivity of the body to the medicine. In Section 4.5, we will see

dR>dM

R = M2 aC
2

-

M
3
b ,

P¿sxd .an Z 0.

Psxd = an xn
+ an - 1 xn - 1

+
Á

+ a2 x2
+ a1 x + a0

y = x3
- 6x2

+ 5x

s -1, 0d .y = x3
- x

y = cx - x2x2
+ ax + b

y =

y = x
ax2

+ bx + c
y =

x

y

0

1

1 2

2
(2, 1)

3

y � 8
x2 � 4

how to find the amount of medicine to which the body is most
sensitive.

51. Suppose that the function y in the Product Rule has a constant
value c. What does the Product Rule then say? What does this say
about the Constant Multiple Rule?

52. The Reciprocal Rule

a. The Reciprocal Rule says that at any point where the function
y(x) is differentiable and different from zero,

Show that the Reciprocal Rule is a special case of the
Quotient Rule.

b. Show that the Reciprocal Rule and the Product Rule together
imply the Quotient Rule.

53. Generalizing the Product Rule The Product Rule gives the
formula

for the derivative of the product uy of two differentiable functions
of x.

a. What is the analogous formula for the derivative of the
product uyw of three differentiable functions of x?

b. What is the formula for the derivative of the product 
of four differentiable functions of x?

c. What is the formula for the derivative of a product
of a finite number n of differentiable functions

of x?

54. Rational Powers

a. Find by writing as and using the Product

Rule. Express your answer as a rational number times a
rational power of x. Work parts (b) and (c) by a similar
method.

b. Find 

c. Find 

d. What patterns do you see in your answers to parts (a), (b), and
(c)? Rational powers are one of the topics in Section 3.6.

55. Cylinder pressure If gas in a cylinder is maintained at a con-
stant temperature T, the pressure P is related to the volume V by a
formula of the form

in which a, b, n, and R are constants. Find . (See accompa-
nying figure.)

dP>dV

P =

nRT
V - nb

-

an2

V 2 ,

d
dx

 sx7>2d .

d
dx

 sx5>2d .

x # x1>2x3>2d
dx

 Ax3>2 B

u1 u2 u3 Á un

u1 u2 u3 u4

d
dx

 suyd = u 
dy
dx

+ y 
du
dx

d
dx

 a1y b = -

1
y2 

dy
dx

.
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T
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56. The best quantity to order One of the formulas for inventory
management says that the average weekly cost of ordering, paying
for, and holding merchandise is

where q is the quantity you order when things run low (shoes, ra-
dios, brooms, or whatever the item might be); k is the cost of plac-
ing an order (the same, no matter how often you order); c is the
cost of one item (a constant); m is the number of items sold each
week (a constant); and h is the weekly holding cost per item (a
constant that takes into account things such as space, utilities, in-
surance, and security). Find and d2A>dq2 .dA>dq

Asqd =

km
q + cm +

hq

2
,

171
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3.4 Derivatives of Trigonometric Functions 183

Derivatives of Trigonometric Functions

Many of the phenomena we want information about are approximately periodic (electro-
magnetic fields, heart rhythms, tides, weather). The derivatives of sines and cosines play a
key role in describing periodic changes. This section shows how to differentiate the six ba-
sic trigonometric functions.

Derivative of the Sine Function

To calculate the derivative of for x measured in radians, we combine the lim-
its in Example 5a and Theorem 7 in Section 2.4 with the angle sum identity for the sine:

sin sx + hd = sin x cos h + cos x sin h .

ƒsxd = sin x ,

3.4
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If then

Derivative definition

Sine angle sum identity

 = cos x .
 = sin x # 0 + cos x # 1

 = sin x # lim
h:0

 
cos h - 1

h
+ cos x # lim

h:0
 
sin h

h

 = lim
h:0

 asin x # cos h - 1
h

b + lim
h:0

 acos x # sin h
h
b

 = lim
h:0

 
sin x scos h - 1d + cos x sin h

h

 = lim
h:0

 
ssin x cos h + cos x sin hd - sin x

h

 = lim
h:0

 
sin sx + hd - sin x

h

 ƒ¿sxd = lim
h:0

 
ƒsx + hd - ƒsxd

h

ƒsxd = sin x ,

184 Chapter 3: Differentiation

Example 5(a) and
Theorem 7, Section 2.4

The derivative of the sine function is the cosine function:

d
dx

 ssin xd = cos x .

EXAMPLE 1 Derivatives Involving the Sine

(a)

Difference Rule

(b)

Product Rule

(c)

Quotient Rule

Derivative of the Cosine Function

With the help of the angle sum formula for the cosine,

cos sx + hd = cos x cos h - sin x sin h ,

 =

x cos x - sin x
x2 .

 
dy
dx

=

x # d
dx

 Asin x B - sin x # 1

x2

y =

sin x
x :

 = x2 cos x + 2x sin x .

 
dy
dx

= x2 
d
dx

 Asin x B + 2x sin x

y = x2 sin x :
 = 2x - cos x .

 
dy
dx

= 2x -

d
dx

 Asin x B
y = x2

- sin x :
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we have

Derivative definition

 = -sin x .

 = cos x # 0 - sin x # 1

 = cos x # lim
h:0

 
cos h - 1

h
- sin x # lim

h:0
 
sin h

h

 = lim
h:0

 cos x # cos h - 1
h

- lim
h:0

 sin x # sin h
h

 = lim
h:0

 
cos xscos h - 1d - sin x sin h

h

 = lim
h:0

 
scos x cos h - sin x sin hd - cos x

h

 
d
dx

 scos xd = lim
h:0

 
cos sx + hd - cos x

h
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Cosine angle sum
identity

Example 5(a) and
Theorem 7, Section 2.4

The derivative of the cosine function is the negative of the sine function:

d
dx

 scos xd = -sin x

1

x

y

0–	 	
–1

1

x

y'

0–	 	
–1

y � cos x

y' � –sin x

FIGURE 3.23 The curve as
the graph of the slopes of the tangents to
the curve y = cos x .

y¿ = -sin x

Figure 3.23 shows a way to visualize this result.

EXAMPLE 2 Derivatives Involving the Cosine

(a)

Sum Rule

(b)

Product Rule

(c)

Quotient Rule

 =
1

1 - sin x
.

sin2 x + cos2 x = 1 =

1 - sin x
s1 - sin xd2

 =

s1 - sin xds -sin xd - cos xs0 - cos xd
s1 - sin xd2

 
dy
dx

=

A1 - sin x B  d
dx

 Acos x B - cos x 
d
dx

 A1 - sin x B
s1 - sin xd2

y =

cos x
1 - sin x

:

 = cos2 x - sin2 x .

 = sin xs -sin xd + cos xscos xd

 
dy
dx

= sin x 
d
dx

 Acos x B + cos x 
d
dx

 Asin x B
y = sin x cos x :

 = 5 - sin x.

 
dy
dx

=

d
dx

 s5xd +

d
dx

 Acos x B
y = 5x + cos x :
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Simple Harmonic Motion

The motion of a body bobbing freely up and down on the end of a spring or bungee cord is
an example of simple harmonic motion. The next example describes a case in which there
are no opposing forces such as friction or buoyancy to slow the motion down.

EXAMPLE 3 Motion on a Spring

A body hanging from a spring (Figure 3.24) is stretched 5 units beyond its rest position
and released at time to bob up and down. Its position at any later time t is

What are its velocity and acceleration at time t ?

Solution We have

Position:

Velocity:

Acceleration:

Notice how much we can learn from these equations:

1. As time passes, the weight moves down and up between and on the
s-axis. The amplitude of the motion is 5. The period of the motion is 

2. The velocity attains its greatest magnitude, 5, when as the graphs
show in Figure 3.25. Hence, the speed of the weight, is greatest when

that is, when (the rest position). The speed of the weight is zero when
Thisoccurswhen at the endpoints of the interval of motion.

3. The acceleration value is always the exact opposite of the position value. When the
weight is above the rest position, gravity is pulling it back down; when the weight is
below the rest position, the spring is pulling it back up.

4. The acceleration, is zero only at the rest position, where and
the force of gravity and the force from the spring offset each other. When the weight is
anywhere else, the two forces are unequal and acceleration is nonzero. The accelera-
tion is greatest in magnitude at the points farthest from the rest position, where

EXAMPLE 4 Jerk

The jerk of the simple harmonic motion in Example 3 is

It has its greatest magnitude when not at the extremes of the displacement but
at the rest position, where the acceleration changes direction and sign.

Derivatives of the Other Basic Trigonometric Functions

Because sin x and cos x are differentiable functions of x, the related functions

tan x =

sin x
cos x , cot x =

cos x
sin x

 , sec x =
1

cos x , and csc x =
1

sin x

sin t = ;1,

j =

da
dt

=

d
dt

 s -5 cos td = 5 sin t .

cos t = ;1.

cos t = 0a = -5 cos t ,

s = 5 cos t = ;5,sin t = 0.
s = 0cos t = 0,

ƒ y ƒ = 5 ƒ  sin t ƒ ,
cos t = 0,y = -5 sin t

2p .
s = 5s = -5

a =

dy
dt

=

d
dt

 s -5 sin td = -5 cos t .

y =

ds
dt

=

d
dt

 s5 cos td = -5 sin t

s = 5 cos t

s = 5 cos t .

t = 0

186 Chapter 3: Differentiation

s

0

–5

5

Rest
position

Position at
t � 0

FIGURE 3.24 A body hanging from
a vertical spring and then displaced
oscillates above and below its rest position.
Its motion is described by trigonometric
functions (Example 3).

t
0

s, y

y � –5 sin t s � 5 cos t

� �
2

3� 2�
2

5�
2

FIGURE 3.25 The graphs of the position
and velocity of the body in Example 3.
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are differentiable at every value of x at which they are defined. Their derivatives, calcu-
lated from the Quotient Rule, are given by the following formulas. Notice the negative
signs in the derivative formulas for the cofunctions.

3.4 Derivatives of Trigonometric Functions 187

Derivatives of the Other Trigonometric Functions

 
d
dx

 scsc xd = -csc x cot x

 
d
dx

 scot xd = -csc2 x

 
d
dx

 ssec xd = sec x tan x

 
d
dx

 stan xd = sec2 x

To show a typical calculation, we derive the derivative of the tangent function. The
other derivations are left to Exercise 50.

EXAMPLE 5

Find d(tan x) dx.

Solution

Quotient Rule

EXAMPLE 6

Find 

Solution

Product Rule

 = sec3 x + sec x tan2 x

 = sec xssec2 xd + tan xssec x tan xd

 = sec x 
d
dx

 A tan x B + tan x 
d
dx

 Asec x B
 y– =

d
dx

 ssec x tan xd

 y¿ = sec x tan x

 y = sec x

y– if y = sec x .

 =
1

cos2 x
= sec2 x

 =

cos2 x + sin2 x
cos2 x

 =

cos x cos x - sin x s -sin xd
cos2 x

 
d
dx

 A tan x B =

d
dx

 a sin x
cos x b =

cos x 
d
dx

 Asin x B - sin x 
d
dx

 Acos x B
cos2 x

>
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The differentiability of the trigonometric functions throughout their domains gives
another proof of their continuity at every point in their domains (Theorem 1, Section 3.1).
So we can calculate limits of algebraic combinations and composites of trigonometric
functions by direct substitution.

EXAMPLE 7 Finding a Trigonometric Limit

lim
x:0

 
22 + sec x

cos sp - tan xd
=

22 + sec 0
cos sp - tan 0d

=

22 + 1
cos sp - 0d

=

23
-1

= -23

188 Chapter 3: Differentiation

4100 AWL/Thomas_ch03p147-243  8/19/04  11:16 AM  Page 188

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html
bounce03.html?2_6_l


188 Chapter 3: Differentiation

EXERCISES 3.4

Derivatives
In Exercises 1–12, find .

1. 2.

3. 4.

5.

6.

7. 8.

9. 10.

11.

12.

In Exercises 13–16, find .

13. 14.

15. 16.

In Exercises 17–20, find 

17. 18.

19. 20.

In Exercises 21–24, find .

21. 22.

23. 24.

25. Find if

a. b. y = sec x .y = csc x .

y–

p =

tan q

1 + tan q
p =

sin q + cos q
cos q

p = s1 + csc qd cos qp = 5 +

1
cot q

dp>dq

r = s1 + sec ud sin ur = sec u csc u

r = u sin u + cos ur = 4 - u2 sin u

dr>du .

s =

sin t
1 - cos t

s =

1 + csc t
1 - csc t

s = t2
- sec t + 1s = tan t - t

ds>dt

y = x2 cos x - 2x sin x - 2 cos x

y = x2 sin x + 2x cos x - 2 sin x

y =

cos x
x +

x
cos xy =

4
cos x +

1
tan x

y =

cos x
1 + sin x

y =

cot x
1 + cot x

y = ssin x + cos xd sec x

y = ssec x + tan xdssec x - tan xd

y = x2 cot x -

1
x2y = csc x - 41x + 7

y =

3
x + 5 sin xy = -10x + 3 cos x

dy>dx

26. Find if

a. b.

Tangent Lines
In Exercises 27–30, graph the curves over the given intervals, together
with their tangents at the given values of x. Label each curve and tan-
gent with its equation.

27.

28.

29.

30.

Do the graphs of the functions in Exercises 31–34 have any horizontal
tangents in the interval If so, where? If not, why not?
Visualize your findings by graphing the functions with a grapher.

31.

32.

33.

34.

35. Find all points on the curve where
the tangent line is parallel to the line Sketch the curve
and tangent(s) together, labeling each with its equation.

36. Find all points on the curve where the
tangent line is parallel to the line Sketch the curve and
tangent(s) together, labeling each with its equation.

y = -x .
y = cot x, 0 6 x 6 p ,

y = 2x .
y = tan x, -p>2 6 x 6 p>2,

y = x + 2 cos x

y = x - cot x

y = 2x + sin x

y = x + sin x

0 … x … 2p?

 x = -p>3, 3p>2
 y = 1 + cos x, -3p>2 … x … 2p

 x = -p>3, p>4
 y = sec x, -p>2 6 x 6 p>2
 x = -p>3, 0, p>3
 y = tan x, -p>2 6 x 6 p>2
 x = -p, 0, 3p>2
 y = sin x, -3p>2 … x … 2p

y = 9 cos x .y = -2 sin x .

y s4d
= d4 y>dx4

T
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In Exercises 37 and 38, find an equation for (a) the tangent to the
curve at P and (b) the horizontal tangent to the curve at Q.

37. 38.

Trigonometric Limits
Find the limits in Exercises 39–44.

39.

40.

41.

42.

43.

44.

Simple Harmonic Motion
The equations in Exercises 45 and 46 give the position of a
body moving on a coordinate line (s in meters, t in seconds). Find the
body’s velocity, speed, acceleration, and jerk at time 

45. 46.

Theory and Examples
47. Is there a value of c that will make

continuous at Give reasons for your answer.x = 0?

ƒsxd = L sin2 3x

x2 , x Z 0

c, x = 0

s = sin t + cos ts = 2 - 2 sin t

t = p>4 sec .

s = ƒstd

lim
u:0

 cos a pu
sin u

b

lim
t:0

 tan a1 -

sin t
t b

lim
x:0

 sin a p + tan x
tan x - 2 sec x

b

lim
x:0

 sec ccos x + p tan a p

4 sec x
b - 1 d

lim
x: -p>621 + cos sp csc xd

lim
x:2

 sin a1x -

1
2
b

x

y

0 1 2

4

3

Q







�
4

P     , 4

�
4

y � 1 � �2 csc x � cot x

x

y

0

1

1 2

2

Q

y � 4 � cot x � 2csc x







�
2

P     , 2

�
2

48. Is there a value of b that will make

continuous at Differentiable at Give reasons for
your answers.

49. Find 

50. Derive the formula for the derivative with respect to x of

a. sec x. b. csc x. c. cot x.

51. Graph for On the same screen, graph

for and 0.1. Then, in a new window, try
and What happens as As

What phenomenon is being illustrated here?

52. Graph for On the same screen, graph

for and 0.1. Then, in a new window, try
and What happens as As

What phenomenon is being illustrated here?

53. Centered difference quotients The centered difference quotient

is used to approximate in numerical work because (1) its
limit as equals when exists, and (2) it usually
gives a better approximation of for a given value of h than
Fermat’s difference quotient

See the accompanying figure.

ƒsx + hd - ƒsxd
h

.

ƒ¿sxd
ƒ¿sxdƒ¿sxdh : 0

ƒ¿sxd

ƒsx + hd - ƒsx - hd
2h

h : 0- ?
h : 0+ ?-0.3 .h = -1, -0.5 ,

h = 1, 0.5, 0.3 ,

y =

cos sx + hd - cos x

h

-p … x … 2p .y = -sin x

h : 0- ?
h : 0+ ?-0.3 .h = -1, -0.5 ,

h = 1, 0.5, 0.3 ,

y =

sin sx + hd - sin x

h

-p … x … 2p .y = cos x

d999>dx999 scos xd .

x = 0?x = 0?

g sxd = e x + b, x 6 0

cos x, x Ú 0
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T

T

T

x

y

0 x

A

hh

C B

x � h x � h

y � f (x)

Slope � f '(x)

Slope �

Slope �

h
f (x � h) � f (x)

f (x � h) � f (x � h)
2h

4100 AWL/Thomas_ch03p147-243  8/19/04  11:16 AM  Page 189

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html
tcu0304f.html
tcu0304f.html
tcu0304g.html
tcu0304g.html
tcu0304h.html
tcu0304h.html


a. To see how rapidly the centered difference quotient for
converges to graph 

together with

over the interval for and 0.3. Compare
the results with those obtained in Exercise 51 for the same
values of h.

b. To see how rapidly the centered difference quotient for
converges to graph 

together with

over the interval and 0.3. Compare
the results with those obtained in Exercise 52 for the same
values of h.

54. A caution about centered difference quotients (Continuation
of Exercise 53.) The quotient

may have a limit as when ƒ has no derivative at x. As a case
in point, take and calculate

As you will see, the limit exists even though has no de-
rivative at Moral: Before using a centered difference quo-
tient, be sure the derivative exists.

55. Slopes on the graph of the tangent function Graph 
and its derivative together on Does the graph of the
tangent function appear to have a smallest slope? a largest slope?
Is the slope ever negative? Give reasons for your answers.

s -p>2, p>2d .
y = tan x

x = 0.
ƒsxd = ƒ x ƒ

lim
h:0

 
ƒ 0 + h ƒ - ƒ 0 - h ƒ

2h
.

ƒsxd = ƒ x ƒ

h : 0

ƒsx + hd - ƒsx - hd
2h

[-p, 2p] for h = 1, 0.5 ,

y =

cos sx + hd - cos sx - hd
2h

y = -sin xƒ¿sxd = -sin x ,ƒsxd = cos x

h = 1, 0.5 ,[-p, 2p]

y =

sin sx + hd - sin sx - hd
2h

y = cos xƒ¿sxd = cos x ,ƒsxd = sin x
56. Slopes on the graph of the cotangent function Graph

and its derivative together for Does the
graph of the cotangent function appear to have a smallest slope?
A largest slope? Is the slope ever positive? Give reasons for your
answers.

57. Exploring (sin kx) x Graph and
together over the interval Where

does each graph appear to cross the y-axis? Do the graphs really
intersect the axis? What would you expect the graphs of

and to do as Why?
What about the graph of for other values of k?
Give reasons for your answers.

58. Radians versus degrees: degree mode derivatives What hap-
pens to the derivatives of sin x and cos x if x is measured in de-
grees instead of radians? To find out, take the following steps.

a. With your graphing calculator or computer grapher in degree
mode, graph

and estimate Compare your estimate with
Is there any reason to believe the limit should be 

b. With your grapher still in degree mode, estimate

c. Now go back to the derivation of the formula for the
derivative of sin x in the text and carry out the steps of the
derivation using degree-mode limits. What formula do you
obtain for the derivative?

d. Work through the derivation of the formula for the derivative
of cos x using degree-mode limits. What formula do you
obtain for the derivative?

e. The disadvantages of the degree-mode formulas become
apparent as you start taking derivatives of higher order. Try it.
What are the second and third degree-mode derivatives of
sin x and cos x?

lim
h:0

 
cos h - 1

h
.

p>180?
p>180.limh:0 ƒshd .

ƒshd =

sin h
h

y = ssin kxd>x
x : 0?y = ssin s -3xdd>xy = ssin 5xd>x

-2 … x … 2.y = ssin 4xd>x
y = ssin 2xd>x ,y = ssin xd>x ,/

0 6 x 6 p .y = cot x

190 Chapter 3: Differentiation

T

T

T

T
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OVERVIEW This chapter studies some of the important applications of derivatives. We
learn how derivatives are used to find extreme values of functions, to determine and ana-
lyze the shapes of graphs, to calculate limits of fractions whose numerators and denomina-
tors both approach zero or infinity, and to find numerically where a function equals zero.
We also consider the process of recovering a function from its derivative. The key to many
of these accomplishments is the Mean Value Theorem, a theorem whose corollaries pro-
vide the gateway to integral calculus in Chapter 5.

244

APPLICATIONS OF

DERIVATIVES

C h a p t e r

4 

Extreme Values of Functions

This section shows how to locate and identify extreme values of a continuous function
from its derivative. Once we can do this, we can solve a variety of optimization problems
in which we find the optimal (best) way to do something in a given situation.

4.1

DEFINITIONS Absolute Maximum, Absolute Minimum
Let ƒ be a function with domain D. Then ƒ has an absolute maximum value on
D at a point c if

and an absolute minimum value on D at c if

ƒsxd Ú ƒscd for all x in D .

ƒsxd … ƒscd for all x in D

Absolute maximum and minimum values are called absolute extrema (plural of the Latin
extremum). Absolute extrema are also called global extrema, to distinguish them from
local extrema defined below.

For example, on the closed interval the function takes on
an absolute maximum value of 1 (once) and an absolute minimum value of 0 (twice). On
the same interval, the function takes on a maximum value of 1 and a mini-
mum value of (Figure 4.1).

Functions with the same defining rule can have different extrema, depending on the
domain.

-1
g sxd = sin x

ƒsxd = cos x[-p>2, p>2]

x

y

0

1
y � sin x

y � cos x

–1

�
2

–�
2

FIGURE 4.1 Absolute extrema for
the sine and cosine functions on

These values can depend
on the domain of a function.
[-p>2, p>2] .
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4.1 Extreme Values of Functions 245

EXAMPLE 1 Exploring Absolute Extrema

The absolute extrema of the following functions on their domains can be seen in Figure 4.2.

x
2

(a) abs min only

 y � x2

D � (–�, �)

y

x
2

(b) abs max and min

 y � x2

D � [0, 2]

y

x
2

(d) no max or min

 y � x2

D � (0, 2)

y

x
2

(c) abs max only

 y � x2

D � (0, 2]

y

FIGURE 4.2 Graphs for Example 1.

Function rule Domain D Absolute extrema on D

(a) No absolute maximum.
Absolute minimum of 0 at 

(b) [0, 2] Absolute maximum of 4 at 
Absolute minimum of 0 at 

(c) (0, 2] Absolute maximum of 4 at 
No absolute minimum.

(d) (0, 2) No absolute extrema.y = x2

x = 2.y = x2

x = 0.
x = 2.y = x2

x = 0.
s - q , q dy = x2

HISTORICAL BIOGRAPHY

Daniel Bernoulli
(1700–1789)

The following theorem asserts that a function which is continuous at every point of a
closed interval [a, b] has an absolute maximum and an absolute minimum value on the in-
terval. We always look for these values when we graph a function.
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The proof of The Extreme Value Theorem requires a detailed knowledge of the real
number system (see Appendix 4) and we will not give it here. Figure 4.3 illustrates possi-
ble locations for the absolute extrema of a continuous function on a closed interval [a, b].
As we observed for the function it is possible that an absolute minimum (or ab-
solute maximum) may occur at two or more different points of the interval.

The requirements in Theorem 1 that the interval be closed and finite, and that the
function be continuous, are key ingredients. Without them, the conclusion of the theorem
need not hold. Example 1 shows that an absolute extreme value may not exist if the inter-
val fails to be both closed and finite. Figure 4.4 shows that the continuity requirement can-
not be omitted.

Local (Relative) Extreme Values

Figure 4.5 shows a graph with five points where a function has extreme values on its domain
[a, b]. The function’s absolute minimum occurs at a even though at e the function’s value is

y = cos x ,

246 Chapter 4: Applications of Derivatives

x
a x2

x2

Maximum and minimum
at interior points

b

M

x
a b

M

m

Maximum and minimum
at endpoints

x
a

Maximum at interior point,
minimum at endpoint

M

b

m
x

a

Minimum at interior point,
maximum at endpoint

M

b

m

(x2, M)

(x1, m)

x1

y � f (x)

y � f (x)

y � f (x)

y � f (x)

x1

�m�

FIGURE 4.3 Some possibilities for a continuous function’s maximum and
minimum on a closed interval [a, b].

THEOREM 1 The Extreme Value Theorem
If ƒ is continuous on a closed interval [a, b], then ƒ attains both an absolute max-
imum value M and an absolute minimum value m in [a, b]. That is, there are
numbers and in [a, b] with and for
every other x in [a, b] (Figure 4.3).

m … ƒsxd … Mƒsx1d = m, ƒsx2d = M ,x2x1

x

y

1
Smallest value

0

No largest value

1

y � x
0 � x � 1

FIGURE 4.4 Even a single point of
discontinuity can keep a function from
having either a maximum or minimum
value on a closed interval. The function

is continuous at every point of [0, 1]
except yet its graph over [0, 1]
does not have a highest point.

x = 1,

y = e x, 0 … x 6 1

0, x = 1
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4.1 Extreme Values of Functions 247

smaller than at any other point nearby. The curve rises to the left and falls to the right
around c, making ƒ(c) a maximum locally. The function attains its absolute maximum at d.

x
ba c e d

Local minimum
No smaller value of
f  nearby.

Local minimum
No smaller value
of f  nearby.

Local maximum
No greater value of

f  nearby.

Absolute minimum
No smaller value of
f  anywhere. Also a

 local minimum.

Absolute maximum
No greater value of f anywhere.
Also a local maximum.

y � f (x)

FIGURE 4.5 How to classify maxima and minima.

DEFINITIONS Local Maximum, Local Minimum
A function ƒ has a local maximum value at an interior point c of its domain if

A function ƒ has a local minimum value at an interior point c of its domain if

ƒsxd Ú ƒscd for all x in some open interval containing c .

ƒsxd … ƒscd for all x in some open interval containing c .

THEOREM 2 The First Derivative Theorem for Local Extreme Values
If ƒ has a local maximum or minimum value at an interior point c of its domain,
and if is defined at c, then

ƒ¿scd = 0.

ƒ¿

We can extend the definitions of local extrema to the endpoints of intervals by defining ƒ
to have a local maximum or local minimum value at an endpoint c if the appropriate in-
equality holds for all x in some half-open interval in its domain containing c. In Figure 4.5,
the function ƒ has local maxima at c and d and local minima at a, e, and b. Local extrema
are also called relative extrema.

An absolute maximum is also a local maximum. Being the largest value overall, it is
also the largest value in its immediate neighborhood. Hence, a list of all local maxima will
automatically include the absolute maximum if there is one. Similarly, a list of all local
minima will include the absolute minimum if there is one.

Finding Extrema

The next theorem explains why we usually need to investigate only a few values to find a
function’s extrema.
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Proof To prove that is zero at a local extremum, we show first that cannot be
positive and second that cannot be negative. The only number that is neither positive
nor negative is zero, so that is what must be.

To begin, suppose that ƒ has a local maximum value at (Figure 4.6) so that
for all values of x near enough to c. Since c is an interior point of ƒ’s do-

main, is defined by the two-sided limit

This means that the right-hand and left-hand limits both exist at and equal 
When we examine these limits separately, we find that

(1)

Similarly,

(2)

Together, Equations (1) and (2) imply 
This proves the theorem for local maximum values. To prove it for local mini-

mum values, we simply use which reverses the inequalities in Equations (1)
and (2).

Theorem 2 says that a function’s first derivative is always zero at an interior point
where the function has a local extreme value and the derivative is defined. Hence the only
places where a function ƒ can possibly have an extreme value (local or global) are

1. interior points where 

2. interior points where is undefined,

3. endpoints of the domain of ƒ.

The following definition helps us to summarize.

ƒ¿

ƒ¿ = 0,

ƒsxd Ú ƒscd ,

ƒ¿scd = 0.

ƒ¿scd = lim
x:c-

 
ƒsxd - ƒscd

x - c Ú 0.

ƒ¿scd = lim
x:c+

 
ƒsxd - ƒscd

x - c … 0.

ƒ¿scd .x = c

lim
x:c

 
ƒsxd - ƒscd

x - c .

ƒ¿scd
ƒsxd - ƒscd … 0

x = c
ƒ¿scd

ƒ¿scd
ƒ¿scdƒ¿scd

248 Chapter 4: Applications of Derivatives

Because 
and  ƒsxd … ƒscd

sx - cd 7 0

Because 
and  ƒsxd … ƒscd

sx - cd 6 0

x
c x

Local maximum value

x

Secant slopes � 0
(never negative)

Secant slopes � 0
(never positive)

y � f (x)

FIGURE 4.6 A curve with a local
maximum value. The slope at c,
simultaneously the limit of nonpositive
numbers and nonnegative numbers, is zero.

DEFINITION Critical Point
An interior point of the domain of a function ƒ where is zero or undefined is a
critical point of ƒ.

ƒ¿

Thus the only domain points where a function can assume extreme values are critical
points and endpoints.

Be careful not to misinterpret Theorem 2 because its converse is false. A differen-
tiable function may have a critical point at without having a local extreme value
there. For instance, the function has a critical point at the origin and zero value
there, but is positive to the right of the origin and negative to the left. So it cannot have a
local extreme value at the origin. Instead, it has a point of inflection there. This idea is de-
fined and discussed further in Section 4.4.

Most quests for extreme values call for finding the absolute extrema of a continuous
function on a closed and finite interval. Theorem 1 assures us that such values exist; Theo-
rem 2 tells us that they are taken on only at critical points and endpoints. Often we can

ƒsxd = x3
x = c
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4.1 Extreme Values of Functions 249

simply list these points and calculate the corresponding function values to find what the
largest and smallest values are, and where they are located.

How to Find the Absolute Extrema of a Continuous Function ƒ on a
Finite Closed Interval
1. Evaluate ƒ at all critical points and endpoints.

2. Take the largest and smallest of these values.

EXAMPLE 2 Finding Absolute Extrema

Find the absolute maximum and minimum values of on 

Solution The function is differentiable over its entire domain, so the only critical point is
where namely We need to check the function’s values at 
and at the endpoints and 

Critical point value:

Endpoint values:

The function has an absolute maximum value of 4 at and an absolute minimum
value of 0 at 

EXAMPLE 3 Absolute Extrema at Endpoints

Find the absolute extrema values of on 

Solution The function is differentiable on its entire domain, so the only critical points
occur where Solving this equation gives

a point not in the given domain. The function’s absolute extrema therefore occur at the
endpoints, (absolute minimum), and (absolute maximum). See
Figure 4.7.

EXAMPLE 4 Finding Absolute Extrema on a Closed Interval

Find the absolute maximum and minimum values of on the interval 

Solution We evaluate the function at the critical points and endpoints and take the
largest and smallest of the resulting values.

The first derivative

has no zeros but is undefined at the interior point The values of ƒ at this one criti-
cal point and at the endpoints are

Critical point value:

Endpoint values:

ƒs3d = s3d2>3
= 23 9 .

ƒs -2d = s -2d2>3
= 23 4

ƒs0d = 0

x = 0.

ƒ¿sxd =
2
3

 x-1>3
=

2

323 x

[-2, 3] .ƒsxd = x2>3

g s1d = 7g s -2d = -32

8 - 4t3
= 0 or t = 23 2 7 1,

g¿std = 0.

[-2, 1] .g std = 8t - t4

x = 0.
x = -2

ƒs1d = 1

ƒs -2d = 4

ƒs0d = 0

x = 1:x = -2
x = 0x = 0.ƒ¿sxd = 2x = 0,

[-2, 1] .ƒsxd = x2

(–2, –32)

(1, 7)

y � 8t � t4

–32

7

1–1–2
t

y

FIGURE 4.7 The extreme values of
on (Example 3).[-2, 1]g std = 8t - t4
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We can see from this list that the function’s absolute maximum value is and it
occurs at the right endpoint The absolute minimum value is 0, and it occurs at the
interior point (Figure 4.8).

While a function’s extrema can occur only at critical points and endpoints, not every
critical point or endpoint signals the presence of an extreme value. Figure 4.9 illustrates
this for interior points.

We complete this section with an example illustrating how the concepts we studied
are used to solve a real-world optimization problem.

EXAMPLE 5 Piping Oil from a Drilling Rig to a Refinery

A drilling rig 12 mi offshore is to be connected by pipe to a refinery onshore, 20 mi
straight down the coast from the rig. If underwater pipe costs $500,000 per mile and land-
based pipe costs $300,000 per mile, what combination of the two will give the least expen-
sive connection?

Solution We try a few possibilities to get a feel for the problem:

(a) Smallest amount of underwater pipe

Underwater pipe is more expensive, so we use as little as we can. We run straight to
shore (12 mi) and use land pipe for 20 mi to the refinery.

(b) All pipe underwater (most direct route)

We go straight to the refinery underwater.

This is less expensive than plan (a).

 L 11,661,900

 Dollar cost = 2544 s500,000d

20

12

Rig

Refinery

�144 + 400

 = 12,000,000

 Dollar cost = 12s500,000d + 20s300,000d

20

12

Rig

Refinery

x = 0.
x = 3.

23 9 L 2.08,

250 Chapter 4: Applications of Derivatives

x

y

10 2 3–1–2

1

2

Absolute maximum;
also a local maximumLocal

maximum

Absolute minimum;
also a local minimum

y � x2/3,  –2 ≤ x ≤ 3

FIGURE 4.8 The extreme values of
on occur at and

(Example 4).x = 3
x = 0[-2, 3]ƒsxd = x2>3

–1

x

y

1–1

1

0

(a)

y � x3

–1

x

y

1–1

1

0

(b)

y � x1/3

FIGURE 4.9 Critical points without
extreme values. (a) is 0 at

but has no extremum there.
(b) is undefined at 
but has no extremum there.y = x1>3

x = 0,y¿ = s1>3dx-2>3
y = x3x = 0,

y¿ = 3x2
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4.1 Extreme Values of Functions 251

(c) Something in between

Now we introduce the length x of underwater pipe and the length y of land-based pipe
as variables. The right angle opposite the rig is the key to expressing the relationship be-
tween x and y, for the Pythagorean theorem gives

(3)

Only the positive root has meaning in this model.
The dollar cost of the pipeline is

To express c as a function of a single variable, we can substitute for x, using Equation (3):

Our goal now is to find the minimum value of c(y) on the interval The
first derivative of c(y) with respect to y according to the Chain Rule is

Setting equal to zero gives

 y = 11 or y = 29.

 y = 20 ; 9

 s20 - yd = ;

3
4

# 12 = ;9

 
16
9

 A20 - y B2 = 144

 
25
9

 A20 - y B2 = 144 + s20 - yd2

 
5
3

 A20 - y B = 2144 + s20 - yd2

 500,000 s20 - yd = 300,0002144 + s20 - yd2

c¿

 = -500,000 
20 - y2144 + s20 - yd2

+ 300,000.

 c¿s yd = 500,000 # 1
2

#
2s20 - yds -1d2144 + s20 - yd2

+ 300,000

0 … y … 20.

cs yd = 500,0002144 + s20 - yd2
+ 300,000y .

c = 500,000x + 300,000y .

 x = 2144 + s20 - yd2 .

 x2
= 122

+ s20 - yd2

12 mi

Rig

Refinery

20 – y y

20 mi

x
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252 Chapter 4: Applications of Derivatives

Only lies in the interval of interest. The values of c at this one critical point and at
the endpoints are

The least expensive connection costs $10,800,000, and we achieve it by running the line
underwater to the point on shore 11 mi from the refinery.

 cs20d = 12,000,000

 cs0d = 11,661,900

 cs11d = 10,800,000

y = 11
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252 Chapter 4: Applications of Derivatives

EXERCISES 4.1

Finding Extrema from Graphs
In Exercises 1–6, determine from the graph whether the function has
any absolute extreme values on [a, b]. Then explain how your answer
is consistent with Theorem 1.

1. 2.

3. 4.

5. 6.

In Exercises 7–10, find the extreme values and where they occur.

7. 8.

2

2

–2 0

y

x1–1

1

–1

y

x

x

y

0 a c b

y � g(x)

x

y

0 a c b

y � g(x)

x

y

0 a bc

y � h(x)

x

y

0 a bc

y � f (x)

x

y

0 a c b

y � f (x)

x

y

0 a c1 bc2

y � h(x)

9. 10.

In Exercises 11-14, match the table with a graph.

11. 12.

13. 14.
x ƒ �(x)

a does not exist
b does not exist
c �1.7

x ƒ �(x)

a does not exist
b 0
c �2

x ƒ �(x)

a 0
b 0
c �5

x ƒ �(x)

a 0
b 0
c 5

2
(1, 2)

–3 2
–1

x

y

0 2–2

5

x

y

a b c a b c

a b c a b c

(a) (b)

(c) (d)
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4.1 Extreme Values of Functions 253

Absolute Extrema on Finite Closed Intervals
In Exercises 15–30, find the absolute maximum and minimum values
of each function on the given interval. Then graph the function. Iden-
tify the points on the graph where the absolute extrema occur, and in-
clude their coordinates.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

In Exercises 31–34, find the function’s absolute maximum and mini-
mum values and say where they are assumed.

31.

32.

33.

34.

Finding Extreme Values
In Exercises 35–44, find the extreme values of the function and where
they occur.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44. y =

x + 1
x2

+ 2x + 2
y =

x

x2
+ 1

y = 23 + 2x - x2y =

123 1 - x2

y =

121 - x2
y = 2x2

- 1

y = x3
- 3x2

+ 3x - 2y = x3
+ x2

- 8x + 5

y = x3
- 2x + 4y = 2x2

- 8x + 9

hsud = 3u2>3, -27 … u … 8

g sud = u3>5, -32 … u … 1

ƒsxd = x5>3, -1 … x … 8

ƒsxd = x4>3, -1 … x … 8

ƒstd = ƒ t - 5 ƒ , 4 … t … 7

ƒstd = 2 - ƒ t ƒ , -1 … t … 3

g sxd = sec x, -

p

3
… x …

p

6

g sxd = csc x, p
3

… x …

2p
3

ƒsud = tan u, -

p

3
… u …

p

4

ƒsud = sin u, -

p

2
… u …

5p
6

g sxd = -25 - x2, -25 … x … 0

g sxd = 24 - x2, -2 … x … 1

hsxd = -3x2>3, -1 … x … 1

hsxd = 23 x, -1 … x … 8

Fsxd = -

1
x  , -2 … x … -1

Fsxd = -

1
x2 , 0.5 … x … 2

ƒsxd = 4 - x2, -3 … x … 1

ƒsxd = x2
- 1, -1 … x … 2

ƒsxd = -x - 4, -4 … x … 1

ƒsxd =

2
3

 x - 5, -2 … x … 3

Local Extrema and Critical Points
In Exercises 45–52, find the derivative at each critical point and deter-
mine the local extreme values.

45. 46.

47. 48.

49. 50.

51.

52.

In Exercises 53 and 54, give reasons for your answers.

53. Let 

a. Does exist?

b. Show that the only local extreme value of ƒ occurs at 

c. Does the result in part (b) contradict the Extreme Value
Theorem?

d. Repeat parts (a) and (b) for replacing 2
by a.

54. Let 

a. Does exist?

b. Does exist?

c. Does exist?

d. Determine all extrema of ƒ.

Optimization Applications
Whenever you are maximizing or minimizing a function of a single
variable, we urge you to graph the function over the domain that is ap-
propriate to the problem you are solving. The graph will provide in-
sight before you begin to calculate and will furnish a visual context for
understanding your answer.

55. Constructing a pipeline Supertankers off-load oil at a docking
facility 4 mi offshore. The nearest refinery is 9 mi east of the
shore point nearest the docking facility. A pipeline must be con-
structed connecting the docking facility with the refinery. The
pipeline costs $300,000 per mile if constructed underwater and
$200,000 per mile if overland.

a. Locate Point B to minimize the cost of the construction.

Shore

9 mi

A B Refinery

4 mi

Docking Facility

ƒ¿s -3d
ƒ¿s3d
ƒ¿s0d

ƒsxd = ƒ x3
- 9x ƒ .

ƒsxd = sx - ad2>3 ,

x = 2.

ƒ¿s2d

ƒsxd = sx - 2d2>3 .

y = • -

1
4

 x2
-

1
2

 x +

15
4

,  x … 1

x3
- 6x2

+ 8x,      x 7 1

y = e -x2
- 2x + 4,  x … 1

-x2
+ 6x - 4,  x 7 1

y = e3 - x,        x 6 0

3 + 2x - x2,  x Ú 0
y = e4 - 2x,  x … 1

x + 1,   x 7 1

y = x223 - xy = x24 - x2

y = x2>3sx2
- 4dy = x2>3sx + 2d
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b. The cost of underwater construction is expected to increase,
whereas the cost of overland construction is expected to stay
constant. At what cost does it become optimal to construct the
pipeline directly to Point A?

56. Upgrading a highway A highway must be constructed to con-
nect Village A with Village B. There is a rudimentary roadway
that can be upgraded 50 mi south of the line connecting the two
villages. The cost of upgrading the existing roadway is $300,000
per mile, whereas the cost of constructing a new highway is
$500,000 per mile. Find the combination of upgrading and new
construction that minimizes the cost of connecting the two vil-
lages. Clearly define the location of the proposed highway.

57. Locating a pumping station Two towns lie on the south side of
a river. A pumping station is to be located to serve the two towns.
A pipeline will be constructed from the pumping station to each
of the towns along the line connecting the town and the pumping
station. Locate the pumping station to minimize the amount of
pipeline that must be constructed.

58. Length of a guy wire One tower is 50 ft high and another tower
is 30 ft high. The towers are 150 ft apart. A guy wire is to run
from Point A to the top of each tower.

a. Locate Point A so that the total length of guy wire is minimal.

b. Show in general that regardless of the height of the towers, the
length of guy wire is minimized if the angles at A are equal.

59. The function

models the volume of a box.

a. Find the extreme values of V.

V sxd = xs10 - 2xds16 - 2xd, 0 6 x 6 5,

150'

50'
30'

A

10 mi

2 mi

5 mi

B

P

A

Old road

150 mi

50 mi 50 mi

BA

b. Interpret any values found in part (a) in terms of volume of
the box.

60. The function

models the perimeter of a rectangle of dimensions x by .

a. Find any extreme values of P.

b. Give an interpretation in terms of perimeter of the rectangle
for any values found in part (a).

61. Area of a right triangle What is the largest possible area for a
right triangle whose hypotenuse is 5 cm long?

62. Area of an athletic field An athletic field is to be built in the shape
of a rectangle x units long capped by semicircular regions of radius r
at the two ends. The field is to be bounded by a 400-m racetrack.

a. Express the area of the rectangular portion of the field as a
function of x alone or r alone (your choice).

b. What values of x and r give the rectangular portion the largest
possible area?

63. Maximum height of a vertically moving body The height of a
body moving vertically is given by

with s in meters and t in seconds. Find the body’s maximum height.

64. Peak alternating current Suppose that at any given time t (in
seconds) the current i (in amperes) in an alternating current cir-
cuit is What is the peak current for this cir-
cuit (largest magnitude)?

Theory and Examples
65. A minimum with no derivative The function has

an absolute minimum value at even though ƒ is not differ-
entiable at Is this consistent with Theorem 2? Give rea-
sons for your answer.

66. Even functions If an even function ƒ(x) has a local maximum
value at can anything be said about the value of ƒ at

Give reasons for your answer.

67. Odd functions If an odd function g (x) has a local minimum
value at can anything be said about the value of g at

Give reasons for your answer.

68. We know how to find the extreme values of a continuous function
ƒ(x) by investigating its values at critical points and endpoints. But
what if there are no critical points or endpoints? What happens
then? Do such functions really exist? Give reasons for your answers.

69. Cubic functions Consider the cubic function

a. Show that ƒ can have 0, 1, or 2 critical points. Give examples
and graphs to support your argument.

b. How many local extreme values can ƒ have?

ƒsxd = ax3
+ bx2

+ cx + d .

x = -c?
x = c ,

x = -c?
x = c ,

x = 0.
x = 0

ƒsxd = ƒ x ƒ

i = 2 cos t + 2 sin t .

s = -

1
2

 gt2
+ y0 t + s0, g 7 0,

100>x
Psxd = 2x +

200
x , 0 6 x 6 q ,

254 Chapter 4: Applications of Derivatives

4100 AWL/Thomas_ch04p244-324  8/20/04  9:01 AM  Page 254

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html
tcu0401g.html
tcu0401g.html
tcu0401g.html


255

70. Functions with no extreme values at endpoints

a. Graph the function

Explain why is not a local extreme value of ƒ.

b. Construct a function of your own that fails to have an extreme
value at a domain endpoint.

Graph the functions in Exercises 71–74. Then find the extreme values
of the function on the interval and say where they occur.

71.

72.

73.

74.

COMPUTER EXPLORATIONS

In Exercises 75–80, you will use a CAS to help find the absolute ex-
trema of the given function over the specified closed interval. Perform
the following steps.

ksxd = ƒ x + 1 ƒ + ƒ x - 3 ƒ , - q 6 x 6 q

hsxd = ƒ x + 2 ƒ - ƒ x - 3 ƒ , - q 6 x 6 q

gsxd = ƒ x - 1 ƒ - ƒ x - 5 ƒ , -2 … x … 7

ƒsxd = ƒ x - 2 ƒ + ƒ x + 3 ƒ , -5 … x … 5

ƒs0d = 0

ƒ(x) = • sin 
1
x  ,  x 7 0

0,     x = 0.

a. Plot the function over the interval to see its general behavior there.

b. Find the interior points where (In some exercises, you
may have to use the numerical equation solver to approximate a
solution.) You may want to plot as well.

c. Find the interior points where does not exist.

d. Evaluate the function at all points found in parts (b) and (c) and
at the endpoints of the interval.

e. Find the function’s absolute extreme values on the interval and
identify where they occur.

75.

76.

77.

78.

79.

80. ƒsxd = x3>4
- sin x +

1
2

, [0, 2p]

ƒsxd = 2x + cos x, [0, 2p]

ƒsxd = 2 + 2x - 3x2>3, [-1, 10>3]

ƒsxd = x2>3s3 - xd, [-2, 2]

ƒsxd = -x4
+ 4x3

- 4x + 1, [-3>4, 3]

ƒsxd = x4
- 8x2

+ 4x + 2, [-20>25, 64>25]

ƒ¿

ƒ¿

ƒ¿ = 0.

T

T
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