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LINEAR MODULATION 

 

U1. AMPLTUDE MODULATION 

The transmission of an information-bearing signal (or the message signal) over 
a bandpass communication channel, such as a telephone line or a satellite channel, 
usually requires a shift of range of frequencies contained in the signal to another 
frequency range suitable for transmission. A shift in the signal frequency range is 
accomplished by modulation. Modulation is defined as the process by which some 
characteristic of a carrier signal is varied in accordance with a modulating signal. 
Here the message signal is referred to as the modulating signal, and the result of 
modulation is referred to as the modulated signal. 

In continuous-wave modulation, a sinusoidal signal Ac cos (ωct + φ) is used as a 
carrier signal. Then a general modulated carrier signal can be represented 
mathematically as 

xc(t)=A(t) cos [ωct + φ(t)]     ωc=2πfc                               (1.1) 

In Eq. (1.1), ωc is known as the carrier frequency. And A(t) and φ(t) are called the 
instantaneous amplitude and phase angle of the carrier, respectively. When A(t) is 
linearly related to the message signal m(t), the result is amplitude modulation. If φ(t) 
or its derivative is linearly related to m(t), then we have phase or frequency 
modulation.  

U2. DOUBLE-SlDEBAND MODULATION 

DSB modulation results when A(t) is proportional to the message signal m(t), that is, 

xDSB(t) = m(t) cos(ωct)      (2.1) 

where we assumed that the constant of proportionality is 1. Equation (2.1) indicates 
that DSB modulation is simply the multiplication of a carrier, cos(ωct), by the 
message signal m(t). By application of the modulation theorem, the spectrum of a 
DSB signal is given by 

𝑋𝑋𝐷𝐷𝐷𝐷𝐷𝐷(ω) = 1
 2 𝑀𝑀(𝜔𝜔 − 𝜔𝜔𝑐𝑐) + 1

 2 𝑀𝑀(𝜔𝜔 + 𝜔𝜔𝑐𝑐)    (2.2) 

U2.1. Generation of DSB Signals 

The process of DSB modulation is illustrated in Fig. (2.1a).The time-domain 
waveforms are shown in Fig.(2.l b and c) for an assumed message signal. The 
frequency-domain representations of m(t) and xDSB(t) are shown in Fig.(2.ld) and (e) 
for an assumed M(ω) having bandwidth ωM. The spectra M(ω−ωc) and M(ω−ωc) are 
the message spectrum translated to ω=ωc and ω= −ωc respectively. The part of the 
spectrum that lies above ωc is called the upper sideband, and the part below ωc is 



[3.2] 
 

     
Dr. Ahmed A. Alrekaby 

called the lower sideband. The spectral range occupied by the message signal is 
called the baseband, and thus the message signal is often referred to as the baseband 
signal. As seen Fig.(2.1e), the spectrum of xDSB(t) has no identifiable carrier in it. 
Thus, this type of modulation is also known as double-sideband suppressed-carrier 
(DSB.SC) modulation. The carrier frequency ωc is normally much higher than the 
bandwidth ωM, of the message signal m(t); that is, ωc >> ωM. 

 

 
Fig.(2.1) 

U2.2 Demodulation of DSB Signals 

Recovery of the message signal from the modulated signal is called demodulation, or 
detection. The message signal m(t) can be recovered from the modulated signal 
xDSB(t) by multiplying xDSB(t) by a local carrier and using a low-pass filter (LPF) on 
the product signal, as shown in Fig.(2.2) 

 
 

 

Fig.(2.2) 

 

− ωc 

− ωM 
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the output of the multiplier is 

           d(t) =  xDSB(t) cos ωct = [m(t) cos ωct] cos ωct 

                 = m(t) cos2ωct 

                  = 1
2 m(t) + 1

2 m(t) cos2ωct, 

 After low-pass filtering of d(t), we obtain 

y(t) = 1
2m(t) 

Thus by proper amplification (multiplying by 2) we can recover the message, signal 
m(t). Demodulation of xDSB(t) by the process shown in Fig.(2.2) in frequency domain 
is illustrated in Fig. (2.3). 

 

 

 
Fig. (2.3) 

ωM - ωM 
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The basic difficulty associated with the DSB modulation is that for demodulation. 
The receiver must generate a local carrier which is in phase and frequency 
synchronism with the incoming carrier. This type of demodulation is known as 
synchronous demodulation or coherent detection. 

Let us evaluate the effect of a phase error in the local oscillator on synchronous DSB 
demodulation shown in Fig. (2.2). 

Let the phase error of the local oscillator be φ. Then the local carrier is expressed as 
cos(ωct + φ). Now 

xDSB(t) = m(t) cosωct 
and 

                   d(t) = [m(t) cos ωct] cos (ωct + φ) 

                 = 1
2 m(t)[cos φ + cos (2ωct + φ)] 

                 = 1
2 m(t) cos φ + 1

2 m(t) cos (2ωct + φ). 

The second term on the right-hand side is filtered out by the low-pass filter, and we 
obtain 

y(t) = 1
2 m(t) cos φ 

this output is proportional to m(t) when φ is constant. The output is completely lost 
when φ = ± π/2. Thus, the phase error in the local carrier causes attenuation of the 
output signal without any distortion as long as φ is constant and not equal to ±π /2. If 
the phase error φ varies randomly with time, then the output also will vary randomly 
and is undesirable. 

To evaluate the effect of a frequency error in the local oscillator on synchronous DSB 
demodulation, let the frequency error of the local oscillator be ∆ω.The local carrier is 
then expressed as cos(ωc + ∆ω)t. Then 

d(t)=m(t) cos ωct cos(ωc+∆ω)t 

     = 1
2 m(t) cos(∆ω)t+ 1

2 m(t) cos(2ωc+∆ω)t 

Thus     y(t) = 1
2 m(t) cos(∆ω)t 

The output is the signal m(t) multiplied by a low-frequency sinusoid. This is a 
“beating” effect and is a very undesirable distortion. 
 

U3. ORDINARY AMPLITUDE MODULATION 

An ordinary amplitude-modulated signal is generated by adding a large carrier signal 
to the DSB signal. The ordinary DSB-LC signal (or simply AM signal) has the form 



[3.5] 
 

     
Dr. Ahmed A. Alrekaby 

xAM(t) =m(t) cos ωct +A cos ωct = [A + m(t) ] cos ωc t            (3.1) 

The spectrum of xAM(t) is given by 

𝑋𝑋𝐴𝐴𝐴𝐴(𝜔𝜔) = 1
2
𝑀𝑀(𝜔𝜔 − 𝜔𝜔𝑐𝑐) + 1

2
𝑀𝑀(𝜔𝜔 + 𝜔𝜔𝑐𝑐) + 𝜋𝜋𝜋𝜋[𝛿𝛿(𝜔𝜔 − 𝜔𝜔𝑐𝑐) + 𝛿𝛿(𝜔𝜔 + 𝜔𝜔𝑐𝑐)]    (3.2) 

An example of an AM signal, in both time domain and frequency domain, is shown in 
Fig. (3.1). 

  
Fig. (3.1) 

U3.1 Demodulation of AM Signals 
 
The advantage of AM over DSB modulation is that a very simple scheme, known as 
envelope detection, can be used for demodulation if sufficient carrier power is 
transmitted. In Eq.(3.1), if A is large enough, the envelope (amplitude) of the 
modulated waveform given by A+m(t) will be proportional to m(t). Demodulation in 
this case simply reduces to the detection of the envelope of a modulated carrier with 
no dependence on the exact phase or frequency of the carrier. If A is not large 
enough, then the envelope of xAM(t) is not always proportional to m(t), as illustrated in 
Fig.(3.2). Thus, the condition for demodulation of AM by an envelope detector is  

𝐴𝐴 + 𝑚𝑚(𝑡𝑡) > 0   𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡                                                     (3.3) 
 or  

𝐴𝐴 ≥ |𝑚𝑚𝑚𝑚𝑚𝑚 {𝑚𝑚(𝑡𝑡)}|                                             (3.4) 
 
where min {m(t)} is the minimum value of m(t).  
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Fig.(3.2) 

 
U3.2 Modulation Index 
 
The modulation index µ.for AM is defined as 

𝜇𝜇 =
|𝑚𝑚𝑚𝑚𝑚𝑚 {𝑚𝑚(𝑡𝑡)}|

𝐴𝐴
                                         (3.5) 

From Eq.(3.4), the condition for demodulation of AM by an envelope detector can be 
expressed as 

µ ≤ 1      (3.6) 
When µ > 1, the carrier is said to be overmodulated, resulting in envelope distortion. 
 
U3.3 Envelope Detector 
 
Figure (3.3a) shows the simplest form of an envelope detector consisting of a diode 
and a resistor-capacitor combination. The operation of the envelope detector is as 
follows. During the positive half-cycle of the input signal, the diode is forward-
biased, and the capacitor C charges up rapidly to the peak value of the input signal. 
As the input signal falls below its maximum, the diode turns off. This is followed by 
a slow discharge of the capacitor through resistor R until the next positive half-cycle, 
when the input signal becomes greater than the capacitor voltage and the diode turns 
on again. The capacitor charges to the new peak value, and the process is repeated. 
 



[3.7] 
 

     
Dr. Ahmed A. Alrekaby 

For proper operation of the envelope detector, the discharge time constant RC must 
be chosen properly. In practice, satisfactory operation requires that 1/𝑓𝑓𝑐𝑐  ≪  1 𝑓𝑓𝑀𝑀⁄  
where 𝑓𝑓𝑀𝑀is the message signal bandwidth. 

 
Fig.(3.3) 

 
UExample (3.1):U Sketch the ordinary AM signal for a single-tone modulation with 
modulation indices of µ = 0.5 and µ = 1. 
USol.U For a single-tone modulation 

m(t)=am cos ωmt 

𝜇𝜇 =
|𝑚𝑚𝑚𝑚𝑚𝑚 {𝑚𝑚(𝑡𝑡)}|

𝐴𝐴 =
𝑎𝑎𝑚𝑚
𝐴𝐴  

Hence   m(t) = am cos ωmt = µ A cos ωmt 
and    xAM(t) =[A+m(t)] cos ωct 

= A [1+µ cos ωmt] cos ωct 
 

 
 

vc(t) 

vc(t) 
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Figure (3.4) shows the envelope and the voltage across the capacitor. The capacitor 
discharges from the peak value E starting at some arbitrary instant t = 0. The voltage 
vc across the capacitor is given by 

𝑣𝑣𝑐𝑐 = 𝐸𝐸𝑒𝑒−𝑡𝑡/𝑅𝑅𝑅𝑅                                                                   (3.7) 
Because the time constant is much larger than the interval between the two successive 
cycles of the carrier (RC ≫ 1/ωc), the capacitor voltage vc discharges exponentially 
for a short time compared to its time constant. Hence, the exponential can be 
approximated by a straight line obtained from the first two terms in Taylor's series for 
𝐸𝐸𝑒𝑒−𝑡𝑡/𝑅𝑅𝑅𝑅   

𝑣𝑣𝑐𝑐 ≅ 𝐸𝐸 �1 −
𝑡𝑡
𝑅𝑅𝑅𝑅�                                                        (3.8) 

 
The slope of the discharge is −E/RC. In order for the capacitor to follow the envelope 
E(t), the magnitude of the slope of the RC discharge must be greater than the 
magnitude of the slope of the envelope E(t). Hence, 

�
𝑑𝑑𝑣𝑣𝑐𝑐
𝑑𝑑𝑑𝑑 �

=
𝐸𝐸
𝑅𝑅𝑅𝑅 ≥ �

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 �

                                                       (3.9) 
 

 
Fig.(3.4) 

 
But the envelope E(t) of a tone-modulated carrier is  

E(t) = A[1 + µ cosωmt] 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = −𝜇𝜇𝜇𝜇𝜔𝜔𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝜔𝜔𝑚𝑚𝑡𝑡 

Hence, Eq. (3.9) becomes  

𝐴𝐴(1 + 𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜔𝜔𝑚𝑚𝑡𝑡)
𝑅𝑅𝑅𝑅 ≥ 𝜇𝜇𝜇𝜇𝜔𝜔𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝜔𝜔𝑚𝑚𝑡𝑡               for all 𝑡𝑡  

or 

𝑅𝑅𝑅𝑅 ≤
1 + 𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜔𝜔𝑚𝑚𝑡𝑡
𝜇𝜇𝜔𝜔𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝜔𝜔𝑚𝑚𝑡𝑡

           𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡 
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The worst possible case occurs when the right hand side is the minimum. This is 
found (as usual. by taking the derivative and setting it to zero) to be when cosωmt=−µ. 
For this case, the right-hand side is �(1 − 𝜇𝜇2/𝜇𝜇𝜔𝜔𝑚𝑚 . Hence  

𝑅𝑅𝑅𝑅 ≤
1
𝜔𝜔𝑚𝑚

�
�1 − 𝜇𝜇2

𝜇𝜇 � 

U3.4 Efficiency of AM  
 
The efficiency η of ordinary AM is defined as the percentage of the total power 
carried by the sidebands that is, 

𝜂𝜂 =
𝑃𝑃𝑠𝑠
𝑃𝑃𝑡𝑡

× 100%                                                       (3.7) 

where Ps is the power carried by the sidebands and Pt is the total power of the AM 
signal. For µ=0.5 (50% modulation) single tone AM signal, η calculated as follow; 

 

                        𝑥𝑥𝐴𝐴𝐴𝐴(𝑡𝑡)  = 𝐴𝐴 𝑐𝑐𝑐𝑐𝑐𝑐 ω𝑐𝑐𝑡𝑡 + µ 𝐴𝐴 𝑐𝑐𝑐𝑐𝑐𝑐 ω𝑚𝑚𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐 ω𝑐𝑐𝑡𝑡 

                                     = 𝐴𝐴 𝑐𝑐𝑐𝑐𝑐𝑐 ω𝑐𝑐 𝑡𝑡 + 1
2µ 𝐴𝐴 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝑐𝑐 − 𝜔𝜔𝑚𝑚)𝑡𝑡 + 1

2µ 𝐴𝐴 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝑐𝑐 + 𝜔𝜔𝑚𝑚)𝑡𝑡 

  𝑃𝑃𝑐𝑐 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  1
2
𝐴𝐴2  

𝑃𝑃𝑆𝑆 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
1
2 ��

1
2
𝜇𝜇𝜇𝜇�

2
+ �1

2
𝜇𝜇𝜇𝜇�

2
� =

1
4𝜇𝜇

2𝐴𝐴2 

The total power Pt 

𝑃𝑃𝑡𝑡 = 𝑃𝑃𝑐𝑐 + 𝑃𝑃𝑠𝑠 = 1
2
𝐴𝐴2 + 1

4
𝜇𝜇2𝐴𝐴2 = 1

2 �1 + 1
2
𝜇𝜇2�𝐴𝐴2 

Thus  

𝜂𝜂 =
𝑃𝑃𝑠𝑠
𝑃𝑃𝑡𝑡

× 100% =
1
4𝜇𝜇

2𝐴𝐴2

�1
2 + 1

4𝜇𝜇2�𝐴𝐴2 × 100% =  
𝜇𝜇2

(2 + 𝜇𝜇2) × 100% 

For µ=0.5,    𝜂𝜂 =  (0.5)2

2+(0.5)2  × 100% = 11.1%   

For µ=1, we have maximum value of η (ηmax), i.e., η𝑚𝑚𝑚𝑚𝑚𝑚 = 1
3

× 100% = 33.3%  

U4. SINGLE-SIDEBAND MODULATION 
 
Ordinary AM modulation and DSB modulation waste bandwidth because they both 
require a transmission bandwidth equal to twice the message bandwidth. Since either 
the upper sideband or the lower sideband contains the complete information of the 
message signal, only one sideband is necessary for information transmission. When 



[3.10] 
 

     
Dr. Ahmed A. Alrekaby 

only one sideband is transmitted, the modulation is referred to as single-sideband 
(SSB) modulation. 

 
 
The benefit of SSB modulation is the reduced bandwidth requirement, but the 
principal disadvantages are the cost and complexity of its implementation. 
 
U4.1 Generation of SSB Signals 
 
U4.1.1 Frequency Discrimination Method 
 
The straightforward way to generate an SSB signal is to generate a DSB signal first 
and then suppress one of the sidebands by filtering. This is known as the frequency 
discrimination method. In practice, this method is not easy because the filter must 
have sharp cutoff characteristics. 
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U4.1.2 Phase-Shift Method 
 
Another method for generating an SSB signal, known as the phase-shift method, is 
illustrated below. The box marked −π/2 is a π/2 phase shifter which delays the phase 
of every frequency component by π/2. An ideal phase shifter is almost impossible to 
implement exactly. But we can approximate it over a finite frequency band. 

 

If we let 𝑚𝑚�(𝑡𝑡) be the output of the −π/2 phase shifter due to the input m(t), then the 
SSB signal xSSB(t) can be represented by 

𝑥𝑥𝑆𝑆𝑆𝑆𝑆𝑆(t) = 𝑚𝑚(𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐 𝜔𝜔𝑐𝑐𝑡𝑡 ∓ 𝑚𝑚�(𝑡𝑡) 𝑠𝑠𝑠𝑠𝑠𝑠 𝜔𝜔𝑐𝑐𝑡𝑡                           (4.1) 

The difference represents the upper-sideband SSB signal, and the sum represents the 
lower-sideband SSB signal. 
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Let      m(t)=cos ωmt 

Then      𝑚𝑚�(𝑡𝑡) = 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝑚𝑚𝑡𝑡 − 𝜋𝜋
2) = 𝑠𝑠𝑠𝑠𝑠𝑠 𝜔𝜔𝑚𝑚𝑡𝑡 

Hence       𝑦𝑦(𝑡𝑡) = 𝑐𝑐𝑐𝑐𝑐𝑐𝜔𝜔𝑚𝑚𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝜔𝜔𝑐𝑐𝑡𝑡 ∓ 𝑠𝑠𝑠𝑠𝑠𝑠𝜔𝜔𝑚𝑚𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝜔𝜔𝑐𝑐𝑡𝑡 

                                                            = 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝑐𝑐 ± 𝜔𝜔𝑚𝑚)𝑡𝑡 

Thus with subtraction we have  

𝑦𝑦(𝑡𝑡) =  𝑥𝑥𝑈𝑈𝑈𝑈𝑈𝑈(𝑡𝑡) = 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝑐𝑐 + 𝜔𝜔𝑚𝑚)𝑡𝑡 

And with addition we have 

𝑦𝑦(𝑡𝑡) =  𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿(𝑡𝑡) = 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝑐𝑐 − 𝜔𝜔𝑚𝑚)𝑡𝑡 

U4.2 Demodulation of SSB Signals 
 
Demodulation of SSB signals can be achieved easily by using the coherent detector as 
used in the DSB demodulation, that is, by multiplying xSSB(t) by a local carrier and 
passing the resulting signal through a low-pass filter.  
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U5. VESTIGIAL-SIDEBAND MODULATION 
 
Vestigial-sideband (VSB) modulation is a compromise between SSB and DSB 
modulations. In this modulation scheme, one sideband is passed almost completely 
whereas just a trace, or vestige, of the other side band is retained. The typical 
bandwidth required to transmit a VSB signal is about 1.25 that of SSB. VSB is used for 
transmission of the video signal in commercial television broadcasting. 
 
U5.1 Generation of VSB Signals 
 
A VSB signal can be generated by passing a DSB signal through a sideband shaping 
filter (or vestigial filter) 

 
 

 

 

 

 
 
 
U5.2 Demodulation of VSB Signals 
 
For VSB signals, m(t) can be recovered by synchronous or coherent demodulation, 
this determines the requirements of the frequency response H(ω). It can be shown 
that for distortionless recovery of m(t), it is required that 
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𝐻𝐻(𝜔𝜔 + 𝜔𝜔𝑐𝑐) + 𝐻𝐻(𝜔𝜔 − 𝜔𝜔𝑐𝑐) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐          𝑓𝑓𝑓𝑓𝑓𝑓 |𝜔𝜔| ≤ 𝜔𝜔𝑀𝑀               (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) 

 

 
 
U6. FREQUICNCY TRANSLATION AND MIXING  
 
In the processing of signals in communication systems, it is often desirable to 
translate or shift the modulated signal to a new frequency band. For example, in most 
commercial AM radio receivers, the received radio frequency (RF) signal [540 to 
1600 kHz] is shifted to the intermediate- frequency (IF) (455-kHz) band for 
processing. The received signal, now translated to a fixed IF, can easily be amplified, 
filtered, and demodulated. 
 
A device that performs the frequency translation of a modulated signal is called a 
frequency mixer (Fig. 6.1). The operation is often called frequency mixing, frequency 
conversion, or heterodyning. 
 
 

 
 

Fig. 6.1 
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• When fLO > fc (superheterodyne receiver); 
540 < fc < 1600 
fLO − fc = 455 

Thus 
fLO = fc +455 

When fc = 540 kHz, we get fLO =995 kHz; and when fc = 1600 kHz, we get fLO = 2055 
kHz. Thus the required tuning range of the local oscillator is 995 − 2055 kHz. 
 

• When fLO < fc 
fLO = fc− 455 

When fc = 540 kHz, we get fLO = 85 kHz, and when fc = 1600 kHz, we get fLO = 1145 
kHz. Thus the required tuning range of the local oscillator for this case is 85 − 1145 
kHz. 
The frequency ratio, that is, the ratio of the highest fLO to the lowest fLO, is 2.07 for the 
case of fLO > fc, and 13.47 for the case of fLO <fc. It is much easier to design an 
oscillator that is tunable over a smaller frequency ratio; that is the reason why the 
usual AM radio receiver uses the superheterodyne system.  
 
A common problem associated with frequency mixing is the presence of the image 
frequency. For example, in an AM superheterodyne receiver (described above), the 
locally generated frequency is chosen to be 455 kHz higher than the incoming signal. 
Suppose that the reception of an AM station at 600 kHz is desired. Then the locally 
generated signal is at 1055 kHz. Now if there is another station at 1510 kHz, it also 
will be received (note that 1510 kHz − 1055 kHz = 455 kHz). 
 
This second frequency, 1510 kHz = 600 kHz + 2(455 kHz), is called the image 
frequency of the first, and after the heterodyning operation it is impossible to 
distinguish the two. Note that the image frequency is separated from the desired 
signal by exactly twice the IF. Usually, the image frequency signal is attenuated by a 
selective RF amplifier placed before the mixer. 
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U7. FREQUENCY-DIVISION MULTIPLEXING  
 
 Multiplexing is a technique whereby several message signals are combined into a 
composite signal for transmission over a common channel. To transmit a number of 
these signals over the same channel, the signals must be kept apart so that they do not 
interfere with each other, and thus they can be separated at the receiver end. 
There are two basic multiplexing techniques: frequency-division multiplexing (FDM) 
and time- division multiplexing (TDM). In FDM the signals are separated in 
frequency, whereas in TDM the signals are separated in time. The FDM scheme is 
illustrated in Fig.(7.1) with the simultaneous transmission of three message signals. 
Any type of modulation can be used in FDM as long as the carrier spacing is 
sufficient to avoid spectral overlap. 

 

ω1 −ω1 

STATION 

0 ω 

ωLO −ωLO 

Local Oscillator 

0 ω 

0 ω 
ωIF = ωLO − ω1 

−ωIF ωLO + ω1 −(ωLO + ω1) 

ω2 −ω2 

IMAGE 

0 ω 

ωLO −ωLO 

Local Oscillator 

0 ω 

0 ω ωIF = ω2−ωLO  −ωIF ω2+ωLO  −(ω2+ωLO) 

ω1 −ω1 

2ωIF 
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However, the most widely used method of modulation is SSB modulation. At the 
receiving end of the channel the three modulated signals are separated by bandpass 
filters (BPFs) and then demodulated. 
 
 

 
 

Fig.(7.1) 
 

FDM is used in telephone system, telemetry, commercial broadcast, television, and 
communication networks. Commercial AM broadcast stations use carrier frequency 
spaced 10 kHz apart in the frequency range from 540 to 1600 kHz. This separation is 
not sufficient to avoid spectral overlap for AM with a reasonably high-fidelity (50 Hz 
to 15 kHz) audio signal. Therefore, AM stations on adjacent carrier frequencies are 
placed geographically far apart to minimize interference. 
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U8. Performance of Linear Modulation Systems in The Presence of Noise 
U8.1 Additive Noise and Signal-to-Noise Ratio 
For the general communication system shown in Fig.(8.1), if the input is modeled by 
the random process X(t) and the channel introduces no distortion other than additive 
noise, the receiver output Yo(t) can be written as 

Yo(t) = Xo(t) + no(t)      (8.1) 
 

 
Fig.(8.1) 

 
Xo(t); signal component at receiver output, and 
no(t); noise component at receiver output 
Assume that n(t) is zero mean white Gaussian noise with Snn(ω)=η/2 
Therefore,  

𝐸𝐸[𝑌𝑌𝑜𝑜2(𝑡𝑡)] = 𝐸𝐸[𝑋𝑋𝑜𝑜2(𝑡𝑡)] + 𝐸𝐸[𝑛𝑛𝑜𝑜2(𝑡𝑡)] = 𝑆𝑆𝑜𝑜 + 𝑁𝑁𝑜𝑜                 (8.2) 

Where So and No; are the average signal and noise power at the receiver output, 
respectively.  
(Note that the expected value of X(t) is 𝐸𝐸[𝑋𝑋(𝑡𝑡)] = ∫ 𝑥𝑥 𝑓𝑓𝑋𝑋(𝑥𝑥; 𝑡𝑡) 𝑑𝑑𝑑𝑑∞

−∞ , and 𝑓𝑓𝑋𝑋(𝑥𝑥; 𝑡𝑡) is 
the probability density function of the random process X(t)). 
The output-signal-to-noise power ratio (S/N)o is defined as 
 

�
𝑆𝑆
𝑁𝑁�𝑜𝑜

=
𝑆𝑆𝑜𝑜
𝑁𝑁𝑜𝑜

=
𝐸𝐸[𝑋𝑋𝑜𝑜2(𝑡𝑡)]
𝐸𝐸[𝑛𝑛𝑜𝑜2(𝑡𝑡)]                                                (8.3) 

      
U8.2 Noise in Baseband Communication Systems 
In baseband communication systems, the signal is transmitted directly without any 
modulation. Assume that the receiver is ideal LPF with bandwidth W =2πB. The 
message signal X(t) is a zero mean random process band-limited to W with power 
spectral density 𝑆𝑆𝑋𝑋𝑋𝑋(𝜔𝜔).  

 
The channel is assumed to be distortionless over the message band so that 
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Xo(t) = X(t− td)      (8.4) 
Where td is the time delay of the system. 

𝑆𝑆𝑜𝑜 = 𝐸𝐸[𝑋𝑋𝑜𝑜2(𝑡𝑡)] = 𝐸𝐸[𝑋𝑋2(𝑡𝑡 − 𝑡𝑡𝑑𝑑)] 

=
1

2𝜋𝜋� 𝑆𝑆𝑋𝑋𝑋𝑋(𝜔𝜔)𝑑𝑑𝑑𝑑 = 𝑆𝑆𝑋𝑋 = 𝑆𝑆𝑖𝑖
𝑊𝑊

−𝑊𝑊
 

Where 𝑆𝑆𝑋𝑋  is the average signal power and 𝑆𝑆𝑖𝑖  is the signal power at the input of the 
receiver. The average output noise power is 

𝑁𝑁𝑜𝑜 = 𝐸𝐸[𝑛𝑛𝑜𝑜2(𝑡𝑡)] =
1

2𝜋𝜋� 𝑆𝑆𝑛𝑛𝑛𝑛 (𝜔𝜔)𝑑𝑑𝑑𝑑
𝑊𝑊

−𝑊𝑊
 

For the case of additive noise, 𝑆𝑆𝑛𝑛𝑛𝑛 (𝜔𝜔) = 𝜂𝜂 2⁄ , and 

𝑁𝑁𝑜𝑜 =
1

2𝜋𝜋�
𝜂𝜂
2𝑑𝑑𝑑𝑑

𝑊𝑊

−𝑊𝑊
= 𝜂𝜂

𝑊𝑊
2𝜋𝜋 = 𝜂𝜂𝜂𝜂 

The output signal-to-noise ratio 

�
𝑆𝑆
𝑁𝑁�𝑜𝑜

=
𝑆𝑆𝑜𝑜
𝑁𝑁𝑜𝑜

=
𝑆𝑆𝑖𝑖
𝜂𝜂𝜂𝜂 = 𝛾𝛾                                                  (8.5) 

The parameter γ is directly proportional to Si. Hence, comparing various systems for 
the output SNR for a given Si is the same as comparing these systems for the output 
SNR for a given γ 
 
U8.3 Noise in Amplitude Modulation Systems 
The receiver front end (RF/IF stages) is modeled as an ideal bandpass filter with a 
bandwidth 2W centered at ωc. 

Yi(t) =Xc(t) +ni(t) 
 

 
 
Where ni(t) is the narrowband noise, which can be expressed as 

ni(t) =nc(t) cosωct− ns(t) sinωct 

If the power spectral density of n(t) is η/2 

𝐸𝐸[𝑛𝑛𝑐𝑐2(𝑡𝑡)] = 𝐸𝐸[𝑛𝑛𝑠𝑠2(𝑡𝑡)] = 𝐸𝐸[𝑛𝑛𝑖𝑖2(𝑡𝑡)] = 2η𝐵𝐵 
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U8.3.1 Synchronous Detection 
UA. DSB Systems 
In a DSB system, the transmitted signal Xc(t) has the form 

Xc(t) =Ac X(t) cos ωct 

Yi(t) =Ac X(t) cos ωct + ni(t) 

   = [Ac X(t) +nc(t)] cosωct − ns(t)sin ωct 

 
Multiplying Yi(t) by 2cos ωct and using a low-pass filter, we obtain 

Yo(t) =Ac X(t) +nc(t) =Xo(t) +no(t) 

Where                            Xo(t) =Ac X(t)            and                no(t) =nc(t) 

We see that the output signal and noise are additive and the quadrature noise 
component ns(t) has been rejected by the demodulator. Now 

𝑆𝑆𝑜𝑜 = 𝐸𝐸[𝑋𝑋𝑜𝑜2(𝑡𝑡)] = 𝐸𝐸[𝐴𝐴𝑐𝑐2𝑋𝑋2(𝑡𝑡)] = 𝐴𝐴𝑐𝑐2 𝐸𝐸[𝑋𝑋2(𝑡𝑡)] = 𝐴𝐴𝑐𝑐2𝑆𝑆𝑋𝑋  

𝑁𝑁𝑜𝑜 = 𝐸𝐸[𝑛𝑛𝑜𝑜2(𝑡𝑡)] = 𝐸𝐸[𝑛𝑛𝑐𝑐2(𝑡𝑡)] = 𝐸𝐸[𝑛𝑛𝑖𝑖2(𝑡𝑡)] = 2η𝐵𝐵 

And the output SNR is 

�
𝑆𝑆
𝑁𝑁�𝑜𝑜

=
𝑆𝑆𝑜𝑜
𝑁𝑁𝑜𝑜

=
𝐴𝐴𝑐𝑐2𝑆𝑆𝑋𝑋
2𝜂𝜂𝜂𝜂                                                     (8.6) 

The input signal power Si is given by 

𝑆𝑆𝑖𝑖 = 𝐸𝐸[𝑋𝑋𝑐𝑐2(𝑡𝑡)] =
1
2𝐴𝐴𝑐𝑐

2𝑆𝑆𝑋𝑋  
Thus, from Eqs. (8.5) and (8.6) we obtain 

�
𝑆𝑆
𝑁𝑁�𝑜𝑜

=
𝑆𝑆𝑖𝑖
𝜂𝜂𝜂𝜂 = 𝛾𝛾                                                  (8.7) 

This indicates that DSB with ideal synchronous detection has the same performance 
as baseband system. 
The SNR at the input of the detector is 

�
𝑆𝑆
𝑁𝑁�𝑖𝑖

=
𝑆𝑆𝑖𝑖
𝑁𝑁𝑖𝑖

=
𝑆𝑆𝑖𝑖

2𝜂𝜂𝜂𝜂 
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and 
(𝑆𝑆 𝑁𝑁⁄ )𝑜𝑜
(𝑆𝑆 𝑁𝑁⁄ )𝑖𝑖

= 𝛼𝛼𝑑𝑑 = 2 

The ratio αd is known as the detector gain and is often used as a figure of merit for 
the demodulation. 

Similar calculations for an SSB system using synchronous detection yield the same 
noise performance as for a baseband or DSB system (prove). 
 
UB. AM Systems 
In ordinary AM systems, AM signals can be demodulated by synchronous detector or 
by envelope detector. The modulated signal in an AM system has the form 

𝑋𝑋𝑐𝑐(𝑡𝑡) = 𝐴𝐴𝑐𝑐[1 + 𝜇𝜇𝜇𝜇(𝑡𝑡)]𝑐𝑐𝑐𝑐𝑐𝑐𝜔𝜔𝑐𝑐𝑡𝑡 
Assume that µ≤1 and |𝑋𝑋(𝑡𝑡)| ≤ 1. The receiver output Yo(t) is 

𝑌𝑌𝑜𝑜(𝑡𝑡) = 𝐴𝐴𝑐𝑐𝜇𝜇𝜇𝜇(𝑡𝑡) + 𝑛𝑛𝑐𝑐(𝑡𝑡) = 𝑋𝑋𝑜𝑜(𝑡𝑡) + 𝑛𝑛𝑜𝑜(𝑡𝑡)                              (8.8) 
Where 

𝑋𝑋𝑜𝑜(𝑡𝑡) = 𝐴𝐴𝑐𝑐𝜇𝜇𝜇𝜇(𝑡𝑡)        𝑎𝑎𝑎𝑎𝑎𝑎        𝑛𝑛𝑜𝑜(𝑡𝑡) = 𝑛𝑛𝑐𝑐(𝑡𝑡)  
So 

�
𝑆𝑆
𝑁𝑁�𝑜𝑜

=
𝑆𝑆𝑜𝑜
𝑁𝑁𝑜𝑜

=
𝐴𝐴𝑐𝑐2𝜇𝜇2𝑆𝑆𝑋𝑋

2𝜂𝜂𝜂𝜂  

The input signal power Si is 

𝑆𝑆𝑖𝑖 =
1
2𝐸𝐸

[𝐴𝐴𝑐𝑐2[1 + 𝜇𝜇𝜇𝜇(𝑡𝑡)]2] 
Since X(t) is assumed to have a zero mean, (i.e., E[2µX(t)]=0) 

𝑆𝑆𝑖𝑖 =
1
2𝐴𝐴𝑐𝑐

2(1 + 𝜇𝜇2𝑆𝑆𝑋𝑋) 
Thus 

𝑆𝑆𝑜𝑜 = 𝐴𝐴𝑐𝑐2𝜇𝜇2𝑆𝑆𝑋𝑋 =
2𝜇𝜇2𝑆𝑆𝑋𝑋

1 + 𝜇𝜇2𝑆𝑆𝑋𝑋
𝑆𝑆𝑖𝑖  

and 

�
𝑆𝑆
𝑁𝑁�𝑜𝑜

=
𝑆𝑆𝑜𝑜
𝑁𝑁𝑜𝑜

=
𝜇𝜇2𝑆𝑆𝑋𝑋

1 + 𝜇𝜇2𝑆𝑆𝑋𝑋
�
𝑆𝑆𝑖𝑖
𝜂𝜂𝜂𝜂�

=
𝜇𝜇2𝑆𝑆𝑋𝑋

1 + 𝜇𝜇2𝑆𝑆𝑋𝑋
𝛾𝛾                    (8.9) 

Because 𝜇𝜇2𝑆𝑆𝑋𝑋 ≤ 1, we have 

�
𝑆𝑆
𝑁𝑁�𝑜𝑜

≤
𝛾𝛾
2 

which indicates that the output SNR in AM is at least 3 dB worse that in DSB systems. 
 
U8.3.2 Envelope Detection and Threshold Effect 
An ordinary AM signal is usually demodulated by envelope detection. The input to 
the detector is 
                              𝑌𝑌𝑖𝑖(𝑡𝑡) = 𝑋𝑋𝑐𝑐(𝑡𝑡) + 𝑛𝑛𝑖𝑖(𝑡𝑡) 
                                       = {𝐴𝐴𝑐𝑐[1 + 𝜇𝜇𝜇𝜇(𝑡𝑡)] + 𝑛𝑛𝑐𝑐(𝑡𝑡)}𝑐𝑐𝑐𝑐𝑐𝑐 𝜔𝜔𝑐𝑐𝑡𝑡 − 𝑛𝑛𝑠𝑠(𝑡𝑡)𝑠𝑠𝑠𝑠𝑠𝑠 𝜔𝜔𝑐𝑐  



[3.22] 
 

     
Dr. Ahmed A. Alrekaby 

We can analyze the effect of the noise by considering a phasor representation of Yi(t) 
𝑌𝑌𝑖𝑖(𝑡𝑡) = 𝑅𝑅𝑅𝑅�𝑌𝑌(𝑡𝑡) 𝑒𝑒𝑗𝑗𝜔𝜔𝑐𝑐𝑡𝑡� 

Where 
𝑌𝑌(𝑡𝑡) = 𝐴𝐴𝑐𝑐[1 + 𝜇𝜇𝜇𝜇(𝑡𝑡)] + 𝑛𝑛𝑐𝑐(𝑡𝑡) + 𝑗𝑗𝑛𝑛𝑠𝑠(𝑡𝑡) 

 
From the phase diagram 

𝑌𝑌𝑖𝑖(𝑡𝑡) = 𝑉𝑉(𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐[𝜔𝜔𝑐𝑐𝑡𝑡 + 𝜙𝜙(𝑡𝑡)] 

𝑉𝑉(𝑡𝑡) = �{𝐴𝐴𝑐𝑐[1 + 𝜇𝜇𝜇𝜇(𝑡𝑡)] + 𝑛𝑛𝑐𝑐(𝑡𝑡)}2 + 𝑛𝑛𝑠𝑠2(𝑡𝑡) 

𝜙𝜙(𝑡𝑡) = 𝑡𝑡𝑡𝑡𝑡𝑡−1 𝑛𝑛𝑠𝑠(𝑡𝑡)
𝐴𝐴𝑐𝑐[1 + 𝜇𝜇𝜇𝜇(𝑡𝑡)] + 𝑛𝑛𝑐𝑐(𝑡𝑡) 

UA. Large-SNR (Signal Dominance) case 

When (S/N)i ≫1, 𝐴𝐴𝑐𝑐[1 + 𝜇𝜇𝜇𝜇(𝑡𝑡)] ≫ 𝑛𝑛𝑖𝑖(𝑡𝑡), and hence 𝐴𝐴𝑐𝑐[1 + 𝜇𝜇𝜇𝜇(𝑡𝑡)] ≫ 𝑛𝑛𝑐𝑐(𝑡𝑡) and 
𝑛𝑛𝑠𝑠(𝑡𝑡) for almost all t. Under this condition, the envelope V(t) can be approximated by 

𝐴𝐴𝑐𝑐[1 + 𝜇𝜇𝜇𝜇(𝑡𝑡)] + 𝑛𝑛𝑐𝑐(𝑡𝑡) 
An ideal envelope detector reproduces the envelope V(t) minus its dc component, so 

𝑌𝑌𝑜𝑜(𝑡𝑡) = 𝐴𝐴𝑐𝑐𝜇𝜇𝜇𝜇(𝑡𝑡) + 𝑛𝑛𝑐𝑐(𝑡𝑡) 
Which is identical to that of a synchronous detector [Eq.(8.8)]. The output SNR is 
then as given in Eq.(8.9).  

�
𝑆𝑆
𝑁𝑁�𝑜𝑜

=
𝜇𝜇2𝑆𝑆𝑋𝑋

1 + 𝜇𝜇2𝑆𝑆𝑋𝑋
𝛾𝛾 

Therefore, for AM, when (S/N)i ≫1, the performance of the envelope detector is 
identical to that of the synchronous detector. 
 
UB. Small- SNR (Noise Dominance) Case: 
When (S/N)i ≪1, the envelope of the resultant signal is primarily dominated by the 
envelope of the noise signal. The envelope of the resultant signal is approximated by 

𝑉𝑉(𝑡𝑡) ≈ 𝑉𝑉𝑛𝑛(𝑡𝑡) + 𝐴𝐴𝑐𝑐[1 + 𝜇𝜇𝜇𝜇(𝑡𝑡)]𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝑛𝑛(𝑡𝑡)                     (8.10) 
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Where V(t) and 𝜙𝜙𝑛𝑛(𝑡𝑡) are the envelope and the phase of the noise ni(t). Equation 
(8.10) indicates that the output contains no term proportional to X(t) and that noise is 
multiplicative. The signal X(t) is multiplied by noise in the form of 𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝑛𝑛(𝑡𝑡) which 
is random. Thus the information in X(t) has been lost. Under these circumstances, it is 
meaningless to talk about SNR. 
 
UExample 8.1 
Calculate the transmission bandwidth BT and the required transmitter power ST of 
DSB, SSB, and AM systems for transmitting an audio signal which has a bandwidth of 
10 kHz with an output SNR of 40 dB. Assume that the channel introduces a 40 dB 
power loss and channel noise is AWGN with PSD (η/2)=10−9 W/Hz. Assume 
µ2SX=0.5 for AM. 
USol.  

𝐵𝐵𝑇𝑇 = �20 𝑘𝑘𝑘𝑘𝑘𝑘              𝑓𝑓𝑓𝑓𝑓𝑓 𝐷𝐷𝐷𝐷𝐷𝐷 𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴𝐴𝐴
10 𝑘𝑘𝑘𝑘𝑘𝑘                               𝑓𝑓𝑓𝑓𝑓𝑓 𝑆𝑆𝑆𝑆𝑆𝑆

� 

For DSB and SSB 

�
𝑆𝑆
𝑁𝑁�𝑂𝑂

=
𝑆𝑆𝑖𝑖
𝜂𝜂𝜂𝜂 = 104   (= 40𝑑𝑑𝑑𝑑) 

and       𝑆𝑆𝑖𝑖 = 𝜂𝜂𝜂𝜂(104) = 2(10−9)(104)(104) = 0.2 𝑊𝑊 
since the channel power loss is 40 dB, the required transmitted power ST is 

ST = 0.2 (104) = 2000W = 2 kW 
For an AM system with envelop detection 
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Thus, the required transmitted power ST is 3 times that for the DSB or SSB system, 
that is,  ST = 6 kW 

 


