
Operating Systems I- Lecture 6 Lecturer : Dr . Sura Z. Alrashid

1

Table	of	Contents	

CPU	Scheduling	...	1	

5.1	Basic	Concepts	...	1	

5.1.1	CPU–I/O	Burst	Cycle	..	2	

5.1.2	CPU	Scheduler	...	3	

5.1.3	Pre-emptive	Scheduling	..	3	

5.1.4	Dispatcher	...	4	

5.2	Scheduling	Criteria	...	4	

5.3	Scheduling	Algorithms	...	6	

5.3.1	First-Come,	First-Served	Scheduling	...	6	

5.3.2	Shortest-Job-First	Scheduling	...	Error!	Bookmark	not	defined.	

5.3.3	Priority	Scheduling	...	Error!	Bookmark	not	defined.	

CPU Scheduling

CPU scheduling is the basis of multiprogrammed operating systems. By

switching the CPU among processes, the operating system can make the

computer more productive. In this chapter, we introduce basic CPU-scheduling

concepts and present several CPU-scheduling algorithms. We also consider the

problem of selecting an algorithm for a particular system.

In Chapter 4, we introduced threads to the process model. On operating systems

that support them, it is kernel-level threads—not processes—that are in fact being

scheduled by the operating system. However, the terms process scheduling and

thread scheduling are often used interchangeably.

5.1	Basic	Concepts	

In a single-processor system, only one process can run at a time; any others must

wait until the CPU is free and can be rescheduled. The objective of

multiprogramming is to have some process running at all times, to maximize CPU

Operating Systems I- Lecture 6 Lecturer : Dr . Sura Z. Alrashid

2

utilization. The idea is relatively simple. A process is executed until it must wait,

typically for the completion of some I/O request. In a simple computer system,

the CPU then just sits idle. All this waiting time is wasted; no useful work is

accomplished. With multiprogramming, we try to use this time productively.

Several processes are kept in memory at one time. When one process has to wait,

the operating system takes the CPU away from that

Figure 5.1 Alternating sequence of CPU and I/O bursts.

process and gives the CPU to another process. This pattern continues. Every time

one process has to wait, another process can take over use of the CPU.

5.1.1	CPU–I/O	Burst	Cycle		

The success of CPU scheduling depends on an observed property of processes:

process execution consists of a cycle of CPU execution and I/O wait. Processes

alternate between these two states. Process execution begins with a CPU burst.

That is followed by an I/O burst, which is followed by another CPU burst, then

another I/O burst, and so on. Eventually, the final CPU burst ends with a system

Operating Systems I- Lecture 6 Lecturer : Dr . Sura Z. Alrashid

3

request to terminate execution (Figure 5.1).

5.1.2	CPU	Scheduler		

Whenever the CPU becomes idle, the operating system must select one of the

processes in the ready queue to be executed. The selection process is carried out

by the short-term scheduler (or CPU scheduler). The scheduler selects a process

from the processes in memory that are ready to execute and allocates the CPU to

that process.

Note that the ready queue is not necessarily a first-in, first-out (FIFO) queue.

Conceptually, however, all the processes in the ready queue are lined up waiting

for a chance to run on the CPU.

The records in the queues are generally process control blocks (PCBs) of the

processes.

5.1.3	Pre-emptive	Scheduling		

CPU-scheduling decisions may take place under the following four

circumstances:

• When a process switches from the running state to the waiting state (for

example, as the result of an I/O request or an invocation of wait for the

termination of one of the child processes)

• When a process switches from the running state to the ready state (for

 example, when an interrupt occurs)  

• When a process switches from the waiting state to the ready state (for

example, at completion of I/O)  

• When a process terminates  

Operating Systems I- Lecture 6 Lecturer : Dr . Sura Z. Alrashid

4

For situations 1 and 4, there is no choice in terms of scheduling. A new process

(if one exists in the ready queue) must be selected for execution. There is a choice,

however, for situations 2 and 3.

When scheduling takes place only under circumstances 1 and 4, we say that the

scheduling scheme is nonpreemptive or cooperative; otherwise, it is

preemptive. Under nonpreemptive scheduling, once the CPU has been allocated

to a process, the process keeps the CPU until it releases the CPU, either by

terminating or by switching to the waiting state. This scheduling method was used

by Microsoft Windows 3.x; Windows 95 introduced preemptive scheduling, and

all subsequent versions of Windows operating systems have used preemptive

scheduling. The Mac OS X operating system for the Macintosh also uses

preemptive scheduling;

5.1.4	Dispatcher		

Another component involved in the CPU-scheduling function is the dispatcher.

The dispatcher is the module that gives control of the CPU to the process

selected by the short-term scheduler. This function involves the following:

- Switching context 	

- Switching to user mode

- Jumping to the proper location in the user program to restart that program

The dispatcher should be as fast as possible, since it is invoked during every

process switch. The time it takes for the dispatcher to stop one process and

start another running is known as the dispatch latency.

5.2	Scheduling	Criteria		

Different CPU-scheduling algorithms have different properties, and the choice of

a particular algorithm may favour one class of processes over another. In

Operating Systems I- Lecture 6 Lecturer : Dr . Sura Z. Alrashid

5

choosing which algorithm to use in a particular situation, we must consider the

properties of the various algorithms.

Many criteria have been suggested for comparing CPU-scheduling algorithms.

Which characteristics are used for comparison can make a substantial difference

in which algorithm is judged to be best. The criteria include the following:

• CPU utilization. We want to keep the CPU as busy as possible.

Conceptually, CPU utilization can range from 0 to 100 percent. In a real

system, it should range from 40 percent (for a lightly loaded system) to 90

percent (for a heavily used system).  

• Throughput. If the CPU is busy executing processes, then work is being

done. One measure of work is the number of processes that are

completed per time unit, called throughput. For long processes, this rate

may be one process per hour; for short transactions, it may be ten processes

per second.

• Turnaround time. From the point of view of a particular process, the

important criterion is how long it takes to execute that process. The

interval from the time of submission of a process to the time of

completion is the turnaround time. Turnaround time is the sum of the

periods spent waiting to get into memory, waiting in the ready queue,

executing on the CPU, and doing I/O.  

• Waiting time. The CPU-scheduling algorithm does not affect the amount

of time during which a process executes or does I/O; it affects only the

amount of time that a process spends waiting in the ready queue. Waiting

time is the sum of the periods spent waiting in the ready queue.  

• Response time. In an interactive system, turnaround time may not be the

best criterion. Often, a process can produce some output fairly early and

can continue computing new results while previous results are being output

Operating Systems I- Lecture 6 Lecturer : Dr . Sura Z. Alrashid

6

to the user. Thus, another measure is the time from the submission of a

request until the first response is produced. This measure, called response

time, is the time it takes to start responding, not the time it takes to output

the response. The turnaround time is generally limited by the speed of the

output device.

It is desirable to maximize CPU utilization and throughput and to minimize

turnaround time, waiting time, and response time. In most cases, we optimize the

average measure. However, under some circumstances, it is desirable to optimize

the minimum or maximum values rather than the average. For example, to

guarantee that all users get good service, we may want to minimize the maximum

response time.

Investigators have suggested that, for interactive systems (such as time- sharing

systems), it is more important to minimize the variance in the response time than

to minimize the average response time. A system with reasonable and predictable

response time may be considered more desirable than a system that is faster on

the average but is highly variable. However, little work has been done on CPU-

scheduling algorithms that minimize variance.

we consider only one CPU burst (in milliseconds) per process in our examples.

Our measure of comparison is the average waiting time.

5.3	Scheduling	Algorithms		

CPU scheduling deals with the problem of deciding which of the processes in the

ready queue is to be allocated the CPU. There are many different CPU-scheduling

algorithms. In this section, we describe several of them.

5.3.1	First-Come,	First-Served	Scheduling		

By far the simplest CPU-scheduling algorithm is the first-come, first-served

Operating Systems I- Lecture 6 Lecturer : Dr . Sura Z. Alrashid

7

(FCFS) scheduling algorithm. With this scheme, the process that requests the

CPU first is allocated the CPU first. The implementation of the FCFS policy is

easily managed with a FIFO queue. When a process enters the ready queue, its

process control block is linked onto the tail of the queue. When the CPU is free,

it is allocated to the process at the head of the queue. The running process is then

removed from the queue. The code for FCFS scheduling is simple to write and

understand.

On the negative side, the average waiting time under the FCFS policy is often

quite long. Consider the following set of processes that arrive at time 0, with the

length of the CPU burst given in milliseconds:

If the processes arrive in the order P1, P2, P3, and are served in FCFS order, we

get the result shown in the following Gantt chart, which is a bar chart that

illustrates a particular schedule, including the start and finish times of each of the

participating processes:

The waiting time is 0 milliseconds for process P1, 24 milliseconds for process

P2, and 27 milliseconds for process P3. Thus, the average waiting time is (0 + 24

+ 27)/3 = 17 milliseconds. If the processes arrive in the order P2, P3, P1,

however, the results will be as shown in the following Gantt chart:

188 Chapter 5 CPU Scheduling

output to the user. Thus, another measure is the time from the submission
of a request until the first response is produced. This measure, called
response time, is the time it takes to start responding, not the time it takes
to output the response. The turnaround time is generally limited by the
speed of the output device.

It is desirable to maximize CPU utilization and throughput and to minimize
turnaround time, waiting time, and response time. In most cases, we optimize
the average measure. However, under some circumstances, it is desirable
to optimize the minimum or maximum values rather than the average. For
example, to guarantee that all users get good service, we may want to minimize
the maximum response time.

Investigators have suggested that, for interactive systems (such as time-
sharing systems), it is more important to minimize the variance in the response
time than to minimize the average response time. A system with reasonable
and predictable response time may be considered more desirable than a system
that is faster on the average but is highly variable. However, little work has
been done on CPU-scheduling algorithms that minimize variance.

As we discuss various CPU-scheduling algorithms in the following section,
we illustrate their operation. An accurate illustration should involve many
processes, each a sequence of several hundred CPU bursts and I/O bursts.
For simplicity, though, we consider only one CPU burst (in milliseconds) per
process in our examples. Our measure of comparison is the average waiting
time. More elaborate evaluation mechanisms are discussed in Section 5.7.

5.3 Scheduling Algorithms

CPU scheduling deals with the problem of deciding which of the processes in the
ready queue is to be allocated the CPU. There are many different CPU-scheduling
algorithms. In this section, we describe several of them.

5.3.1 First-Come, First-Served Scheduling

By far the simplest CPU-scheduling algorithm is the first-come, first-served
(FCFS) scheduling algorithm. With this scheme, the process that requests the
CPU first is allocated the CPU first. The implementation of the FCFS policy is
easily managed with a FIFO queue. When a process enters the ready queue, its
PCB is linked onto the tail of the queue. When the CPU is free, it is allocated to
the process at the head of the queue. The running process is then removed from
the queue. The code for FCFS scheduling is simple to write and understand.

On the negative side, the average waiting time under the FCFS policy is
often quite long. Consider the following set of processes that arrive at time 0,
with the length of the CPU burst given in milliseconds:

Process Burst Time

P1 24
P2 3
P3 3

5.3 Scheduling Algorithms 189

If the processes arrive in the order P1, P2, P3, and are served in FCFS order,
we get the result shown in the following Gantt chart, which is a bar chart that
illustrates a particular schedule, including the start and finish times of each of
the participating processes:

P1 P2 P3

3027240

The waiting time is 0 milliseconds for process P1, 24 milliseconds for process
P2, and 27 milliseconds for process P3. Thus, the average waiting time is (0
+ 24 + 27)/3 = 17 milliseconds. If the processes arrive in the order P2, P3, P1,
however, the results will be as shown in the following Gantt chart:

P1P2 P3

300 3 6

The average waiting time is now (6 + 0 + 3)/3 = 3 milliseconds. This reduction
is substantial. Thus, the average waiting time under an FCFS policy is generally
not minimal and may vary substantially if the processes CPU burst times vary
greatly.

In addition, consider the performance of FCFS scheduling in a dynamic
situation. Assume we have one CPU-bound process and many I/O-bound
processes. As the processes flow around the system, the following scenario
may result. The CPU-bound process will get and hold the CPU. During this
time, all the other processes will finish their I/O and will move into the ready
queue, waiting for the CPU. While the processes wait in the ready queue, the
I/O devices are idle. Eventually, the CPU-bound process finishes its CPU burst
and moves to an I/O device. All the I/O-bound processes, which have short
CPU bursts, execute quickly and move back to the I/O queues. At this point,
the CPU sits idle. The CPU-bound process will then move back to the ready
queue and be allocated the CPU. Again, all the I/O processes end up waiting in
the ready queue until the CPU-bound process is done. There is a convoy effect
as all the other processes wait for the one big process to get off the CPU. This
effect results in lower CPU and device utilization than might be possible if the
shorter processes were allowed to go first.

Note also that the FCFS scheduling algorithm is nonpreemptive. Once the
CPU has been allocated to a process, that process keeps the CPU until it releases
the CPU, either by terminating or by requesting I/O. The FCFS algorithm is thus
particularly troublesome for time-sharing systems, where it is important that
each user get a share of the CPU at regular intervals. It would be disastrous to
allow one process to keep the CPU for an extended period.

5.3.2 Shortest-Job-First Scheduling

A different approach to CPU scheduling is the shortest-job-first (SJF) schedul-
ing algorithm. This algorithm associates with each process the length of the
process’s next CPU burst. When the CPU is available, it is assigned to the process

Operating Systems I- Lecture 6 Lecturer : Dr . Sura Z. Alrashid

8

The average waiting time is now (6 + 0 + 3)/3 = 3 milliseconds. This reduction is

substantial. Thus, the average waiting time under an FCFS policy is generally not

minimal and may vary substantially if the processes’ CPU burst times vary

greatly.

Note that the ready queue is not necessarily a first-in, first-out (FIFO) queue.

Note also that the FCFS scheduling algorithm is nonpreemptive.

process to age to a priority-0 process.

5.3 Scheduling Algorithms 189

If the processes arrive in the order P1, P2, P3, and are served in FCFS order,
we get the result shown in the following Gantt chart, which is a bar chart that
illustrates a particular schedule, including the start and finish times of each of
the participating processes:

P1 P2 P3

3027240

The waiting time is 0 milliseconds for process P1, 24 milliseconds for process
P2, and 27 milliseconds for process P3. Thus, the average waiting time is (0
+ 24 + 27)/3 = 17 milliseconds. If the processes arrive in the order P2, P3, P1,
however, the results will be as shown in the following Gantt chart:

P1P2 P3

300 3 6

The average waiting time is now (6 + 0 + 3)/3 = 3 milliseconds. This reduction
is substantial. Thus, the average waiting time under an FCFS policy is generally
not minimal and may vary substantially if the processes CPU burst times vary
greatly.

In addition, consider the performance of FCFS scheduling in a dynamic
situation. Assume we have one CPU-bound process and many I/O-bound
processes. As the processes flow around the system, the following scenario
may result. The CPU-bound process will get and hold the CPU. During this
time, all the other processes will finish their I/O and will move into the ready
queue, waiting for the CPU. While the processes wait in the ready queue, the
I/O devices are idle. Eventually, the CPU-bound process finishes its CPU burst
and moves to an I/O device. All the I/O-bound processes, which have short
CPU bursts, execute quickly and move back to the I/O queues. At this point,
the CPU sits idle. The CPU-bound process will then move back to the ready
queue and be allocated the CPU. Again, all the I/O processes end up waiting in
the ready queue until the CPU-bound process is done. There is a convoy effect
as all the other processes wait for the one big process to get off the CPU. This
effect results in lower CPU and device utilization than might be possible if the
shorter processes were allowed to go first.

Note also that the FCFS scheduling algorithm is nonpreemptive. Once the
CPU has been allocated to a process, that process keeps the CPU until it releases
the CPU, either by terminating or by requesting I/O. The FCFS algorithm is thus
particularly troublesome for time-sharing systems, where it is important that
each user get a share of the CPU at regular intervals. It would be disastrous to
allow one process to keep the CPU for an extended period.

5.3.2 Shortest-Job-First Scheduling

A different approach to CPU scheduling is the shortest-job-first (SJF) schedul-
ing algorithm. This algorithm associates with each process the length of the
process’s next CPU burst. When the CPU is available, it is assigned to the process

