The System CaO-SiO₂:

The system CaO-SiO₂ illustrates many of the reactions. As shown in fig.(28), there are four intermediate compounds, which are:

- 1- The compound $CaO.SiO_2$ undergoes an β - α transformation at 1125°C and melts congruently at 1544°C.
- 2- The compound 3CaO.2SiO_2 melts incongruently at 1464°C to form α 2CaO.SiO₂ and liquid.
- 3- The compound 2CaO.SiO_2 transforms from the γ to the α' form when heated to 725°C and at 1450°C transforms from α' to α before melting congruently at 2130°C .
- 4- The compound **3CaO.SiO₂** is stable between 1250°C and 2070°C. At the latter temperature, it melts incongruently to form CaO and liquid.

In the system CaO-SiO₂, two liquids are in equilibrium above 1705°C for compositions containing approximately 2-28% CaO. Since the Ca-O bond is considerably stronger than the Na-O bond, stable liquid-liquid separation occurs. The attraction of the calcium ion for oxygen is of sufficient magnitude to cause the melt to separate into two liquids: one liquid containing a small percentage of Ca and the other a relatively large percentage.

There is no apparent solid solution between any of the phases in the system. There are three eutectic points at (1436, 1460 and 2050)°C, two peritectic points at (1464 and 2070)°C and one monotectic point at (1705)°C.

The system Na₂O-SiO₂ exhibits no stable liquid immiscibility (which is represented by metastable subliquidus in phase diagram).

Fig.(28) System CaO-SiO₂.

Example: System R-G is shown in fig.(29).

- 1- Make an isoplethal study for a melt of composition 20wt% G and 80wt% R.
- 2- What are the reactions which occur in this system?

