
LAMINAR BOUNDARY LAYER ON A FLAT PLATE 

Newton’s second law of motion, Fx = d(mV )/dt 

The rate of mass flow rate   𝑚̇ = 𝜌𝑢𝐴     

 𝑑𝑚̇ = 𝜌 𝑢 𝑑𝐴   

   𝑚̇ = ∫𝜌𝑢𝑑𝐴  

Continuity equation for the boundary layer     
∂u

∂x
+

∂v

∂y
=  0   

 The momentum equation of the laminar boundary layer with constant properties 

ρ (u ∂u/∂x + v ∂u/∂y)  = μ (∂
2
u/∂y

2
) – (∂p/∂x) 

The velocity profiles at various x positions are similar; that is, they have the same 

functional dependence on the y coordinate. There are four conditions to satisfy. 

The simplest function that we can choose to satisfy these conditions is a 

polynomial with four arbitrary constants.  

u = C1 + C2y + C3 y
2
 + C4y

3
  

To obtain an expression for the boundary-layer thickness. For our approximate 

analysis the conditions that the velocity function must satisfy:     

u = 0 at y = 0 ………………… .  [ a]    

u = u ∞ at y = δ ……………….   [ b] 

∂u/∂y= 0 at y = δ ……………      [ c]   

For a constant-pressure condition  

∂
2
u/∂y

2
 = 0 at y = 0 …………… .[e]   

Applying the four conditions (a) to (d ) 
𝑢

𝑢∞
=

3

2

𝑦

𝛿
−

1

2
(
𝑦

𝛿
)
3

              Where  (𝛿) boundary − layer thickness     

 

u∞   the free-stream velocity  outside the boundary layer  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ENERGY EQUATION OF THEBOUNDARY LAYER 

∂T/∂x<<∂T/∂y 

the energy balance may be written :      Energy convected in left face + energy 

convected in bottom face+ heat conducted in bottom face+ net viscous work 

done on element= energy convected out right face + energy convected out top 

face+ heat conducted out top face 

 

where Pr is called the Prandtl number  

  
 

 

 

 

 

 

 

 

The viscous dissipation is small in comparison with the conduction term. The 

viscous dissipation is small for even this rather large flow velocity of 70 m/s. 

Thus, for low-velocity incompressible flow 



 
THE THERMAL BOUNDARY LAYER  
For the system shown in Figure . The temperature of the wall is Tw, the 

temperature of the fluid outside the thermal boundary layer is T∞, and the 

thickness of the thermal boundary layer is designated as( δt ). At the wall, the 

velocity is zero, and the heat transfer into the fluid takes place by conduction. 

Thus the local heat flux per unit area, q", is  
𝑞

𝐴
= 𝑞" = −𝑘

𝜕𝑇

𝜕𝑦
]𝑤𝑎𝑙𝑙 

From Newton’s law of cooling   q" = h(Tw − T∞) 

where h is the convection heat-transfer coefficient.  

Combining these equations, 

ℎ =
−𝑘

𝜕𝑇
𝜕𝑦

]𝑤𝑎𝑙𝑙

𝑇𝑤 − 𝑇∞
 

To  find the temperature gradient at the wall in order to evaluate the heat-transfer 

coefficient. This means that we must obtain an expression for the temperature 

distribution. To do this, an approach similar to that used in the momentum 

analysis of the boundary layer is followed. The conditions that the temperature 

distribution must satisfy are 

T = C1 + C2y + C3 y
2
 + C4y

3
  

T = Tw at y = 0……………. [a] 

∂T/∂y= 0 at y = δt ………… [b] 

T = T∞ at y = δt    ………….[e] 

∂
2
T/∂y

2
 = 0 at y = 0………...[ d] 

Since the velocities must be zero at the wall 

Conditions (a) to (d) may be fitted to a cubic polynomial as in the case of the 

velocity profile, so that. 

𝜽

𝜽∞
=

𝑻−𝑻𝒘

𝑻∞−𝑻𝒘
=

𝟑

𝟐

𝒚

𝜹𝒕
−

𝟏

𝟐
(

𝒚

𝜹𝒕
)
𝟑
 

Where    θ = T – Tw  

δt, the thermal-boundary-layer thickness 

Flat plate with unheated starting length 

𝛿

𝛿𝑡
= 𝜁 =

1

1.026
𝑃𝑟−

1

3  1 − (
𝑥0

𝑥
)

3

4
 

1

3

        (***) 

  

When the plate is heated over the entire length, x0 = 0, and 
          
𝜹

𝜹𝒕
= 𝜻 =

𝟏

𝟏. 𝟎𝟐𝟔
𝑷𝒓−𝟏/𝟑 

Hydrodynamic and thermal boundary layers on 

a flat plate. Heating starts at x = x0. 

 



ζ < 1  this assumption is satisfactory for fluids having Prandtl numbers greater 

than about 0.7. Fortunately, most gases and liquids fall within this category. 

Liquid metals are a notable exception, however ,since they have Prandtl numbers 

of the order of 0.01. 

𝒉 =
−𝒌

𝝏𝑻
𝝏𝒚

]𝒘𝒂𝒍𝒍

𝑻𝒘 − 𝑻∞
=

𝟑

𝟐

𝒌

𝜹𝒕
=

𝟑

𝟐

𝒌

𝜻𝜹
 

Substituting for the hydrodynamic-boundary-layer thickness from Equatio and 

using Equation (***)  

ℎ𝑥 = 0.332 𝑘 𝑃𝑟
1
3(

𝑢∞

𝜗𝑥
)1/2[1 − (

𝑥0

𝑥
)

3

]−1/3 
4

 

(hx )local values of the heat-transfer coefficient  in terms of the distance from the 

leading edge of the plate and the fluid properties. 

 

The equation may be nondimensionalized by multiplying both sides by x/k, 

producing the dimensionless group on the left side . 

 

𝒉𝒙

𝒙

𝒌
= 𝟎. 𝟑𝟑𝟐 𝒌 ∗

𝒙

𝒌
 𝑷𝒓

𝟏
𝟑(

𝒖∞

𝝑𝒙
)𝟏/𝟐[𝟏

− (
𝒙𝟎

𝒙
)

𝟑

]−𝟏/𝟑 
𝟒

 

𝑵𝒖𝒙 Called the Nusselt number after Wilhelm Nusselt, who 

made significant contributions to the theory of convection heat 

transfer. Finally. 

 

 
Flat plate heated over its entire length, (x0 = 0)  
constant temperature        

𝑵𝒖𝒙 = 𝟎. 𝟑𝟑𝟐  𝑷𝒓
𝟏

𝟑𝑹𝒆𝒙

𝟏

𝟐     𝒍𝒂𝒎𝒊𝒏𝒂𝒓  (local Nusselt No.)                          

Pr≤0.6  

 

The corresponding relations for turbulent flow 

 𝑵𝒖𝒙 =

𝟎. 𝟎𝟐𝟗𝟔  𝑷𝒓
𝟏

𝟑𝑹𝒆𝒙
𝟎.𝟖         𝐭𝐮𝐫𝐛𝐮𝐥𝐞𝐧𝐭 (𝐥𝐨𝐜𝐚𝐥 𝐍𝐮𝐬𝐬𝐞𝐥𝐭 𝐍𝐨. )    𝟎. 𝟔 ≤

𝐏𝐫 ≤ 𝟔𝟎   
 

 

𝑵𝒖𝒙 =
𝒉𝒙 𝒙

𝒌
 

hx(laminar

) 

xcr                 turbulent                      

leading edge    

Transiti

on  



Flat plate with unheated  starting length(x=x0)  
constant temperature        

 

𝑁𝑢𝑥 =
0.0296  𝑃𝑟

1
3𝑅𝑒𝑥

0.8

[1−(
𝑥0

𝑥
)
9/10

]1/9
             turbulent  

Constant Heat Flux: 
The constant-heat-flux case it can be shown that the local Nusselt number is 

given by 

𝑁𝑢𝑥 =
ℎ𝑥

𝑘
= 0.453𝑅𝑒𝑥

1

2 𝑃𝑟
1

3       𝑙𝑎𝑚𝑖𝑛𝑎𝑟   

which may be expressed in terms of the wall heat flux and temperature difference 

as 

𝑁𝑢𝑥 =
𝑞𝑤𝑥

𝑘(𝑇𝑤 − 𝑇∞)
 

𝑁𝑢𝑥 =
ℎ𝑥

𝑘
= 0.0308𝑅𝑒𝑥

0.8 𝑃𝑟
1
3       𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡  

The Average Heat-Transfer Coefficient and Nusselt Number 

For a plate where heating starts at x0 =0 

The  average heat-transfer coefficient and Nusselt number may be obtained by 

integrating over the length of the plate: ℎ ̅ =
∫ ℎ𝑥   𝑑𝑥
𝐿
0

∫ 𝑑𝑥
𝐿
0

= 2ℎ𝑥=𝐿 

For a plate where heating starts at x = x0 
 It can be shown that the average heat transfer coefficient can be expressed as : 

𝒉̅𝒙𝟎−𝑳

𝒉𝒙=𝑳
= 𝟐𝑳

𝟏−(
𝒙𝟎

𝑳
)𝟑/𝟒

𝑳−𝒙𝟎
  

  

In this case, the total heat transfer for the plate 

would be  
𝒒𝒕𝒐𝒕𝒂𝒍 = 𝒉̅𝒙𝟎−𝑳(𝑳 − 𝒙𝟎)(𝑻𝒘 − 𝑻∞) 

 

 

 

𝑵𝒖𝒙 =
𝟎.𝟑𝟑𝟐  𝑷𝒓

𝟏
𝟑𝑹𝒆𝒙

𝟏/𝟐

[𝟏−(
𝒙𝟎

𝒙
)

𝟑

]𝟏/𝟑     

                laminar 
𝟒

q" 

Tw=constant  


