LAMINAR BOUNDARY LAYER ON A FLAT PLATE
Newton’s second law of motion, Fx = d(mV )/dt
The rate of mass flow rate m = pud
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mzfpudA
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Continuity equation for the boundary layer a—i + a—; =0

The momentum equation of the laminar boundary layer with constant properties

p (u du/dx + v du/dy) = n (8*u/dy?) — (8p/ox)

The velocity profiles at various x positions are similar; that is, they have the same
functional dependence on the y coordinate. There are four conditions to satisfy.
The simplest function that we can choose to satisfy these conditions is a

polynomial with four arbitrary constants.
u=Cl+C2y + C3 y* + C4y’

To obtain an expression for the boundary-layer thickness. For our approximate
analysis the conditions that the velocity function must satisfy:\
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Applying the four conditions (a) to (d ) ’
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uwo the free-stream velocity outside the boundary layer
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Since p and u~c are constants, the variables may be separated to give
140 d 140 v

S = —— r= ——udx
L 13 g
and
5 140 ux
— = ———— 4 const
2 13 u.
At x =10, § =0, so that
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This may be written in terms of the Reynolds number as
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Mass Flow and Boundary-Layer Thickness EXAMPLE 5.3

Air at 27°C and 1 atm flows over a flat plate at a speed of 2 m/s. Calculate the boundary-layer
thickness at distances of 20 cm and 40 cm from the leading edge of the plate. Calculate the mass
flow that enters the boundary layer between x = 20 cm and x = 40 cm. The viscosity of air at 27°C
is 1.85 x 1072 kg/m - s. Assume unit depth in the z direction.

W Solution
The density of air i1s calculated from

p  L.0132x10°

3 3
=P O X T 177k 0.073 b, /ft
RT — (287)(300) g/m™ | m/T]

P

The Reynolds number 1s calculated as

_ (1.177)(2.0)(0.2)

At x =20 cm: Re= =25 448
1.85 x 10—3

_ (L177)(2.0)(0.4)

At x =40 cm: Re= = 50,897
1.85 x 103

The boundary-layer thickness is calculated from Equation (5-21):

S (4.64)(0.2)

At x=20cm: =
(25,448)1/2

=0.00582m [0.24 in]

5= (4.64)(0.4)

At x=40 cm: R ——
(50,897)1/2

=0.00823m [0.4 in]



To calculate the mass flow that enters the boundary layer from the free stream between x =20 cm
and x =40 cm, we simply take the difference between the mass flow in the boundary layer at these
two x positions. At any x posifion the mass flow in the boundary layer 1s given by the integral
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where the velocity 1s given by Equation (5-19),
=L v 1 (_\')3
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Evaluating the integral with this velocity distribution, we have

e [22 1 ()] rm

Thus the mass flow entering the boundary layer is
Am = 3 puing (840 — 829)
= {%}{I A77)(2.0)(0.0082 — 0.0058)
=3.531x 102 kg/s [7.78 x 10~ Ibp /5]

ENERGY EQUATION OF THEBOUNDARY LAYER

0T/0x<<0T/dy

the energy balance may be written :

Energy convected in left face + energy

convected in bottom face+ heat conducted in bottom face+ net viscous work
done on element= energy convected out right face + energy convected out top
face+ heat conducted out top face

where Pr 1s called the Prandtl number Pr=
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The viscous dissipation is small in comparison with the conduction term. The
viscous dissipation is small for even this rather large flow velocity of 70 m/s.

Thus,

for low-velocity incompressible flow
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THE THERMAL BOUNDARY LAYER
For the system shown in Figure . The temperature of the wall is 7w, the
temperature of the fluid outside the thermal boundary layer is 700, and the
thickness of the thermal boundary layer is designated as( J¢ ). At the wall, the
velocity is zero, and the heat transfer into the fluid takes place by conduction.

Thus the local heat flux per unit area, ¢", is

% =q" = _kg_;]wall I__
From Newton’s law of cooling q" =h(Tw — Too) =
where h 1s the convection heat-transfer coefficient. I
Combining these equations, S !
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To find the temperature gradient at the wall in order to evaluate the heat-transfer
coefficient. This means that we must obtain an expression for the temperature
distribution. To do this, an approach similar to that used in the momentum
analysis of the boundary layer is followed. The conditions that the temperature
distribution must satisfy are

T=Cl1+ C2y+ C3 y* + C4y’
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Since the velocities must be zero at the wall
Conditions (a) to (d) may be fitted to a cubic polynomial as in the case of the
velocity profile, so that.
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ot 1.026 X Hydrodynamic and thermal boundary layers on

a flat plate. Heating starts at x= X0.

When the plate is heated over the entire length, x0 = 0, and
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C <1 this assumption is satisfactory for fluids having Prandtl numbers greater
than about 0.7. Fortunately, most gases and liquids fall within this category.
Liquid metals are a notable exception, however ,since they have Prandtl numbers
of the order of 0.01.
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Substituting for the hydrodynamic-boundary-layer thickness from Equatio and
using Equation (**%*) hy(laminar
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turbulent

leading edge

(hy )local values of the heat-transfer coefficient in terms of the distance from the
leading edge of the plate and the fluid properties.

The equation may be nondimensionalized by multiplying both sides by x/k,
producing the dimensionless group on the left side .
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h,x Nu, Called the Nusselt number after Wilhelm Nusselt, who
k made significant contributions to the theory of convection heat
transfer. Finally.

Nu, =

Flat plate heated over its entire length, (x0 = 0)

constant temperature
1

1
Nu, = 0.332 Pr3Re,z laminar (local Nusselt No.)
Pr<0.6

The corresponding relations for turbulent flow
Nu, =

1
0.0296 P1'§Rex°'8 turbulent (local Nusselt No.) 0.6 <
Pr < 60



Flat plate with unheated starting length(x=x0) TW-constant

wn_
constant temperature
1

0.332 Pr3Re,/? ,
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Constant Heat Flux:
The constant-heat-flux case it can be shown that the local Nusselt number is

turbulent

given by
1 [
Nu, = % = 0.453Re§ Pr§ laminar q" /I\ T T T T

which may be expressed in terms of the wall heat flux and temperature difference
as
qwX
Nu, =
T e (Tw — Too)

hx 1
Nu, = — = 0.0308Rel® Pr3  turbulent

The Average Heat-Transfer Coefficient and Nusselt Number
For a plate where heating starts at X0 =0
The average heat-transfer coefficient and Nusselt number may be obtained by

L
integrating over the length of the plate: h = Jo izx - 2h, -

Jo dx

For a plate where heating starts at x = x0
It can be shown that the average heat transfer coefficient can be expressed as :

haos _ oy 2D
hy—p L—x0
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In this case, the total heat transfer for the plate . .
would be <«

Qiotal = HxO—L(L —x0) (TW - Too)



