2.3.3 Homophonic Substitution Cipher

Homophonic substitution ciphers maps each character (a) of the plaintext alphabet into a set of ciphertext elements $f(a)$ called homophone. Beale , and High order are example of homophonic ciphers.

- BEALE CIPHERS:

A plaintext message $M=m 1 \mathrm{~m} 2$... is encrypted as $\mathrm{C}=\mathrm{c} 1 \mathrm{c} 1$... where $\mathbf{c i}$ is picked at random from the set of homophones $f(\mathbf{m i})$.

Example: English letters are enciphered as integers (0-99), a group of integers are assigned to a letter proportional to the relative frequency of the letter, as follows:

Letter Homophones

A $\quad 171934456606783$
I 082253658890
L 034476
N 02091527324059
$0 \quad 0111232842547080$
P $\quad 3391$
T 051020294558647899
$\mathrm{M}=\mathrm{P}$ L A I N P I L 0 T
C= 91445665593308762878

Homophonic substitution ciphers are more complicated than simple substitution ciphers, but still do not obscure all of the statistical properties of the plaintext language.

- Higher-Order Homophonic

It is possible to construct higher-order homophonic ciphers such that an intercepted ciphertext will decipher into more than one meaningful message under different keys. To construct $2^{\text {nd }}$ - order homophonic cipher, (i.e., number ($1-n^{2}$) are randomly inserted into ($n * n$) matrix K, whereas columns and rows correspond to the characters of the plaintext alphabet (A). For each character a , row a defines one set of homophones $\mathrm{f} 1(\mathrm{a})$, and column a defines another set of homophones $\mathrm{f} 2(\mathrm{a})$. There are two keys (mapping) f1 and f2. The ciphertext is selected from the intersection f 1 (mi), and f 2 (xi).
$\mathbf{C i}=[\mathrm{mi}, \mathrm{xi}]$.
Where $\quad \mathbf{M}=\mathrm{ml} \mathrm{m} \mathbf{2} \ldots \ldots$ Message,

$$
\mathrm{X}=\mathrm{xl} \quad \text { x2 } \ldots \ldots . . \quad \text { Dummy message. }
$$

Example : if $\mathrm{n}=5,5$ *5 matrix for the alphabet $[\mathrm{E}, \mathrm{I}, \mathrm{L}, \mathrm{M}, \mathrm{S}]$:

	\mathbf{E}	\mathbf{I}	\mathbf{L}	\mathbf{M}	\mathbf{S}
\mathbf{E}	10	22	18	02	11
\mathbf{I}	12	01	25	05	20
\mathbf{L}	19	06	23	13	07
\mathbf{M}	03	16	08	24	15
\mathbf{S}	17	09	21	14	04

Then the message (smile) is enciphered as:
M: S M I L E
X: L I M E S
C: 2116051911

2.3.4 Polygram Substitution Cipher

Polygram cipher systems are ciphers in which group of letters are encrypted together, and includes enciphering large blocks of letters. Therefore, permits arbitrary substitution for groups of characters. For example the plaintext group "ABC" could be encrypted to "RTQ", "ABB" could be encrypted to "SLL", and so on. Examples of such ciphers are Playfair and Hill ciphers.

- PlayFair Cipher:

Playfair cipher is a diagram substitution cipher, the key is given by a $5 * 5$ matrix of 25 letters (j was not used), as described in figure 2-3. Each pair of plaintext letters are encrypted according to the following rules:

1. If $m 1$ and $m 2$ are in the same row, then $c 1$ and $c 2$ are to the right of m 1 and m 2 , respectively. The first column is considered to the right of the last column.
2. If $m 1$ and $m 2$ are in the same column, then $c 1$ and $c 2$ are below $m 1$ and m 2 respectively. The first row is considered to be below the last row.
3. If $m 1$ and $m 2$ are in different rows and columns, then $c 1$ and $c 2$ are the other two corners of the rectangle.
4. If $\mathrm{m} 1=\mathrm{m} 2$ a null letter is inserted into the plaintext between m 1 and m 2 to eliminate the double.
5. If the plaintext has an odd number of characters, a null letter is appended to the end of the plaintext.

Figure 2-3 Key for Playfair cipher

Example:

$\mathrm{M}=\mathrm{RE}$ NA IS SA NC EX
$E k(M)=H G W C B H$ HR WF GV

- Hill Cipher:

Hill cipher performs linear transformation on \mathbf{d} plaintext characters to get d cipher text characters. If $d=2, M=m 1 m 2$, then $C=\operatorname{Ek}(M)=C 1 C 2$ where:
$\mathrm{C} 1=(\mathrm{k} 11 \mathrm{~m} 1+\mathrm{k} 12 \mathrm{~m} 2) \bmod \mathrm{n}$
$\mathrm{C} 2=(\mathrm{k} 21 \mathrm{~m} 1+\mathrm{k} 22 \mathrm{~m} 2) \bmod \mathrm{n}$ Expressing
M and C as column vectors:
$C=E k(M)=K M$ where K is matrix of coefficients:

Deciphering is done using the inverse matrix K^{-1}
$D k=(C)=K^{-1} C \bmod n=K^{-1} K M \bmod n=M$
Where $\mathrm{K} \mathrm{K}^{-1} \bmod \mathrm{n}=\mathbf{I}$, where I is $2 * 2$ identity matrix.

ملحق لايِجاد معكوس مصفوفة مربعة:

ثروط ايِجلا معكهس المصفوفة :

1. ان تكون المصفوفة مريعة
[2 2.
2. ضرب المصقوفة في معكوسها تسالوي المعكوس في المصقوقة نفسها يِساوي مصقوفة الوحذة
A. $A^{-1}=A^{-1} \cdot A$ $A=\left[\begin{array}{ll}4 & 3 \\ 3 & 2\end{array}\right]$

$$
|A|=\left(4^{*} 2\right)-\left(3^{*} 3\right)=-1
$$

2. نوجب مصفوفة المر الفقات

$$
A=\left[\begin{array}{cc}
2 & -3 \\
-3 & 4
\end{array}\right]
$$

$$
3 \text { نوجد اللصنوفةَ المحورة (اللحورةً) }
$$

$A=\left[\begin{array}{cc}2 & -3 \\ -3 & 4\end{array}\right]$
4. نضرب المصفوفةَ المحورةً ب
$A^{-1}=\frac{1}{-1}\left[\begin{array}{cc}2 & -3 \\ -3 & 4\end{array}\right]$

$$
A^{-1}=\left[\begin{array}{cc}
-2 & 3 \\
3 & -4
\end{array}\right]
$$

$A^{-1} A=\left[\begin{array}{cc}-2 & 3 \\ 3 & -4\end{array}\right]\left[\begin{array}{ll}4 & 3 \\ 3 & 2\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\mathrm{A} A^{-1}=\left[\begin{array}{ll}4 & 3 \\ 3 & 2\end{array}\right]\left[\begin{array}{cc}-2 & 3 \\ 3 & -4\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

$$
\begin{aligned}
& \text { • }
\end{aligned}
$$

• بلـنَذدام الطربيتةُ
$A^{-1}=\frac{1}{\operatorname{det} A}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$
| 1

