
University of Babylon

College of Information Technology

Department of Information Networks

4
th

 Stage, Lecture 6

1

Electronic Mail in the Internet
1. Introduction
Electronic mail has been around since the beginning of the Internet. As with ordinary postal

mail, e-mail is an asynchronous communication medium—people send and read messages

when it is convenient for them, without having to coordinate with other people’s schedules.

In contrast with postal mail, electronic mail is fast, easy to distribute, and inexpensive.

Modern e-mail has many powerful features, including messages with attachments,

hyperlinks, HTML formatted text, and embedded photos. In this section, we examine the

application-layer protocols that are at the heart of Internet e-mail. But before we jump into an

in-depth discussion of these protocols, let’s take a high-level view of the Internet mail system

and its key components.

Figure 1 presents a high-level view of the Internet mail system. We see from this diagram

that it has three major components: user agents, mail servers, and the Simple Mail Transfer

Protocol (SMTP). We now describe each of these components in the context of a sender,

Alice, sending an e-mail message to a recipient, Bob. User agents allow users to read, reply

to, forward, save, and compose messages. Microsoft Outlook and Apple Mail are examples of

user agents for e-mail. When Alice is finished composing her message, her user agent sends

the message to her mail server, where the message is placed in the mail server's outgoing

message queue. When Bob wants to read a message, his user agent retrieves the message

from his mailbox in his mail server.

Mail servers form the core of the e-mail infrastructure. Each recipient, such as Bob, has a

mailbox located in one of the mail servers. Bob's mailbox manages and maintains the

messages that have been sent to him. A typical message starts its journey in the sender's user

agent, travels to the sender's mail server, and travels to the recipient's mail server, where it is

deposited in the recipient's mailbox. When Bob wants to access the messages in his mailbox,

the mail server containing his mailbox authenticates Bob (with usernames and passwords).

Alice's mail server must also deal with failures in Bob's mail server. If Alice's server cannot

deliver mail to Bob's server, Alice's server holds the message in a message queue and

attempts to transfer the message later. Reattempts are often done every 30 minutes or so; if

there is no success after several days, the server removes the message and notifies the sender

(Alice) with an e-mail message.

SMTP is the principal application-layer protocol for Internet electronic mail. It uses the

reliable data transfer service of TCP to transfer mail from the sender's mail server to the

recipient's mail server. As with most application-layer protocols, SMTP has two sides: a

client side, which executes on the sender's mail server, and a server side, which executes on

the recipient's mail server. Both the client and server sides of SMTP run on every mail server.

When a mail server sends mail to other mail servers, it acts as an SMTP client. When a mail

server receives mail from other mail servers, it acts as an SMTP server.

University of Babylon

College of Information Technology

Department of Information Networks

4
th

 Stage, Lecture 6

2

Figure 1: A high-level view of the Internet e-mail system.

1.1 SMTP
SMTP is at the heart of Internet electronic mail. As mentioned above, SMTP transfers

messages from sender's mail servers to the recipient's mail servers. To illustrate the basic

operation of SMTP, let’s walk through a common scenario. Suppose Alice wants to send Bob

a simple ASCII message.

1. Alice invokes her user agent for e-mail, provides Bob’s e-mail address (for example,

bob@someschool.edu), composes a message, and instructs the user agent to send the

message.

2. Alice’s user agent sends the message to her mail server, where it is placed in a message

queue.

3. The client side of SMTP, running on Alice’s mail server, sees the message in the message

queue. It opens a TCP connection to an SMTP server, running on Bob’s mail server.

4. After some initial SMTP handshaking, the SMTP client sends Alice’s message into the

TCP connection.

5. At Bob’s mail server, the server side of SMTP receives the message. Bob’s mail server

then places the message in Bob’s mailbox.

University of Babylon

College of Information Technology

Department of Information Networks

4
th

 Stage, Lecture 6

3

6. Bob invokes his user agent to read the message at his convenience.

The scenario is summarized in Figure 2. It is important to observe that SMTP does not

normally use intermediate mail servers for sending mail, even when the two mail servers are

located at opposite ends of the world. If Alice’s server is in Hong Kong and Bob’s server is in

St. Louis, the TCP connection is a direct connection between the Hong Kong and St. Louis

servers. In particular, if Bob’s mail server is down, the message remains in Alice’s mail

server and waits for a new attempt—the message does not get placed in some intermediate

mail server.

Figure 2: Alice sends a message to Bob.

Let’s now take a closer look at how SMTP transfers a message from a sending mail server to

a receiving mail server. We will see that the SMTP protocol has many similarities with

protocols that are used for face-to-face human interaction. First, the client SMTP (running on

the sending mail server host) has TCP establish a connection to port 25 at the server SMTP

(running on the receiving mail server host). If the server is down, the client tries again later.

Once this connection is established, the server and client perform some application-layer

handshaking—just as humans often introduce themselves before transferring information

from one to another, SMTP clients and servers introduce themselves before transferring

information. During this SMTP handshaking phase, the SMTP client indicates the e-mail

address of the sender (the person who generated the message) and the e-mail address of the

recipient. Once the SMTP client and server have introduced themselves to each other, the

client sends the message. SMTP can count on the reliable data transfer service of TCP to get

the message to the server without errors. The client then repeats this process over the same

TCP connection if it has other messages to send to the server; otherwise, it instructs TCP to

close the connection.

Let’s next take a look at an example transcript of messages exchanged between an SMTP

client (C) and an SMTP server (S). The hostname of the client is crepes.fr and the hostname

of the server is hamburger.edu. The ASCII text lines prefaced with C: are exactly the lines the

client sends into its TCP socket, and the ASCII text lines prefaced with S: are exactly the

lines the server sends into its TCP socket. The following transcript begins as soon as the TCP

connection is established.

S: 220 hamburger.edu

C: HELO crepes.fr

S: 250 Hello crepes.fr, pleased to meet you

C: MAIL FROM: <alice@crepes.fr>

University of Babylon

College of Information Technology

Department of Information Networks

4
th

 Stage, Lecture 6

4

S: 250 alice@crepes.fr ... Sender ok

C: RCPT TO: <bob@hamburger.edu>

S: 250 bob@hamburger.edu ... Recipient ok

C: DATA

S: 354 Enter mail, end with ”.” on a line by itself

C: Do you like ketchup?

C: How about pickles?

C: .

S: 250 Message accepted for delivery

C: QUIT

S: 221 hamburger.edu closing connection

In the example above, the client sends a message (“Do you like ketchup? How about

pickles?”) from mail server crepes.fr to mail server hamburger.edu. As part of the dialogue,

the client issued five commands: HELO (an abbreviation for HELLO), MAIL FROM, RCPT

TO, DATA, and QUIT. These commands are self-explanatory. The client also sends a line

consisting of a single period, which indicates the end of the message to the server. (In ASCII

jargon, each message ends with CRLF.CRLF, where CR and LF stand for carriage return and

line feed, respectively.) The server issues replies to each command, with each reply having a

reply code and some (optional) English-language explanation. We mention here that SMTP

uses persistent connections: If the sending mail server has several messages to send to the

same receiving mail server, it can send all of the messages over the same TCP connection.

For each message, the client begins the process with a new MAIL FROM: crepes.fr,

designates the end of message with an isolated period, and issues QUIT only after all

messages have been sent.

1.2 Comparison with HTTP
Let’s now briefly compare SMTP with HTTP. Both protocols are used to transfer files from

one host to another: HTTP transfers files (also called objects) from a Web server to a Web

client (typically a browser); SMTP transfers files (that is, e-mail messages) from one mail

server to another mail server. When transferring the files, both persistent HTTP and SMTP

use persistent connections. Thus, the two protocols have common characteristics. However,

there are important differences. First, HTTP is mainly a pull protocol—someone loads

information on a Web server and users use HTTP to pull the information from the server at

their convenience. In particular, the TCP connection is initiated by the machine that wants to

receive the file. On the other hand, SMTP is primarily a push protocol—the sending mail

server pushes the file to the receiving mail server. In particular, the TCP connection is

initiated by the machine that wants to send the file.

A second important difference concerns how a document consisting of text and images (along

with possibly other media types) is handled. HTTP encapsulates each object in its own HTTP

response message. SMTP places all of the message’s objects into one message.

1.3 Mail Message Formats

When Alice writes an ordinary snail-mail letter to Bob, she may include all kinds of

peripheral header information at the top of the letter, such as Bob's address, her own return

address, and the date. Similarly, when an e-mail message is sent from one person to another,

a header containing peripheral information precedes the body of the message itself. The

header lines and the body of the message are separated by a blank line (that is, by CRLF). As

with HTTP, each header line contains readable text, consisting of a keyword followed by a

colon followed by a value. Some of the keywords are required and others are optional. Every

header must have a From: header line and a To: header line; a header may include a Subject:

University of Babylon

College of Information Technology

Department of Information Networks

4
th

 Stage, Lecture 6

5

header line as well as other optional header lines. It is important to note that these header

lines are different from the SMTP commands we studied in Section 1.1 (even though they

contain some common words such as "from" and "to"). The commands in that section were

part of the SMTP handshaking protocol; the header lines examined in this section are part of

the mail message itself. A typical message header looks like this:

From: alice@crepes.fr

To: bob@hamburger.edu

Subject: Searching for the meaning of life.

After the message header, a blank line follows; then the message body (in ASCII) follows.

1.4 Mail Access Protocols

Once SMTP delivers the message from Alice’s mail server to Bob’s mail server, the message

is placed in Bob’s mailbox. Mail access uses a client-server architecture—the typical user

reads e-mail with a client that executes on the user’s end system, for example, on an office

PC, a laptop, or a smartphone. By executing a mail client on a local PC, users enjoy a rich set

of features, including the ability to view multimedia messages and attachments.

Given that Bob (the recipient) executes his user agent on his local PC, it is natural to consider

placing a mail server on his local PC as well. With this approach, Alice’s mail server would

dialogue directly with Bob’s PC. There is a problem with this approach, however. Recall that

a mail server manages mailboxes and runs the client and server sides of SMTP. If Bob’s mail

server were to reside on his local PC, then Bob’s PC would have to remain always on, and

connected to the Internet, in order to receive new mail, which can arrive at any time. This is

impractical for many Internet users. Instead, a typical user runs a user agent on the local PC

but accesses its mailbox stored on an always-on shared mail server. This mail server is shared

with other users and is typically maintained by the user’s ISP (for example, university or

company).

Now let’s consider the path an e-mail message takes when it is sent from Alice to Bob. We

just learned that at some point along the path the e-mail message needs to be deposited in

Bob’s mail server. This could be done simply by having Alice’s user agent send the message

directly to Bob’s mail server. And this could be done with SMTP—indeed, SMTP has been

designed for pushing e-mail from one host to another. However, typically the sender’s user

agent does not dialogue directly with the recipient’s mail server. Instead, as shown in Figure

3, Alice’s user agent uses SMTP to push the e-mail message into her mail server, then Alice’s

mail server uses SMTP (as an SMTP client) to relay the e-mail message to Bob’s mail server.

Why the two-step procedure? Primarily because without relaying through Alice’s mail server,

Alice’s user agent doesn’t have any recourse to an unreachable destination mail server. By

having Alice first deposit the e-mail in her own mail server, Alice’s mail server can

repeatedly try to send the message to Bob’s mail server, say every 30 minutes, until Bob’s

mail server becomes operational. (And if Alice’s mail server is down, then she has the

recourse of complaining to her system administrator!).

University of Babylon

College of Information Technology

Department of Information Networks

4
th

 Stage, Lecture 6

6

Figure 3: E-mail protocols and their communicating entities.

But there is still one missing piece to the puzzle! How does a recipient like Bob, running a

user agent on his local PC, obtain his messages, which are sitting in a mail server within

Bob’s ISP? Note that Bob’s user agent can’t use SMTP to obtain the messages because

obtaining the messages is a pull operation, whereas SMTP is a push protocol. The puzzle is

completed by introducing a special mail access protocol that transfers messages from Bob’s

mail server to his local PC. There are currently a number of popular mail access protocols,

including Post Office Protocol—Version 3 (POP3), Internet Mail Access Protocol

(IMAP), and HTTP.

Figure 3 provides a summary of the protocols that are used for Internet mail: SMTP is used to

transfer mail from the sender’s mail server to the recipient’s mail server; SMTP is also used

to transfer mail from the sender’s user agent to the sender’s mail server. A mail access

protocol, such as POP3, is used to transfer mail from the recipient’s mail server to the

recipient’s user agent.

POP3

POP3 is an extremely simple mail access protocol. Because the protocol is so simple, its

functionality is rather limited. POP3 begins when the user agent (the client) opens a TCP

connection to the mail server (the server) on port 110. With the TCP connection established,

POP3 progresses through three phases: authorization, transaction, and update. During the first

phase, authorization, the user agent sends a username and a password (in the clear) to

authenticate the user. During the second phase, transaction, the user agent retrieves messages;

also during this phase, the user agent can mark messages for deletion, remove deletion marks,

and obtain mail statistics. The third phase, update, occurs after the client has issued the quit

command, ending the POP3 session; at this time, the mail server deletes the messages that

were marked for deletion.

In a POP3 transaction, the user agent issues commands, and the server responds to each

command with a reply. There are two possible responses: +OK (sometimes followed by

server-to-client data), used by the server to indicate that the previous command was fine; and

-ERR, used by the server to indicate that something was wrong with the previous command.

The authorization phase has two principal commands: user <username> and pass

<password>. Suppose that mailServer is the name of your mail server. Then, using telnet

(which is a user command and an underlying TCP/IP protocol for accessing remote

computers) will produce something like:

telnet mailServer 110

+OK POP3 server ready

user bob

+OK

pass hungry

+OK user successfully logged on

University of Babylon

College of Information Technology

Department of Information Networks

4
th

 Stage, Lecture 6

7

If you misspell a command, the POP3 server will reply with an -ERR message. Now let’s

take a look at the transaction phase. A user agent using POP3 can often be configured (by the

user) to “download and delete” or to “download and keep.” The sequence of commands

issued by a POP3 user agent depends on which of these two modes the user agent is operating

in. In the download-and-delete mode, the user agent will issue the list, retr, and dele

commands. As an example, suppose the user has two messages in his or her mailbox. In the

dialogue below, C: (standing for client) is the user agent and S: (standing for server) is the

mail server. The transaction will look something like:

C: list

S: 1 498

S: 2 912

S: .

C: retr 1

S: (blah blah ...

S:

S:blah)

S: .

C: dele 1

C: retr 2

S: (blah blah ...

S:

S:blah)

S: .

C: dele 2

C: quit

S: +OK POP3 server signing off

The user agent first asks the mail server to list the size of each of the stored messages. The

user agent then retrieves and deletes each message from the server. Note that after the

authorization phase, the user agent employed only four commands: list, retr, dele, and quit.

After processing the quit command, the POP3 server enters the update phase and removes

messages 1 and 2 from the mailbox.

A problem with this download-and-delete mode is that the recipient, Bob, may be nomadic

and may want to access his mail messages from multiple machines, for example, his office

PC, his home PC, and his portable computer. The download- and delete mode partitions

Bob’s mail messages over these three machines; in particular, if Bob first reads a message on

his office PC, he will not be able to reread the message from his portable at home later in the

evening. In the download-and-keep mode, the user agent leaves the messages on the mail

server after downloading them. In this case, Bob can reread messages from different

machines; he can access a message from work and access it again later in the week from

home. During a POP3 session between a user agent and the mail server, the POP3 server

maintains some state information; in particular, it keeps track of which user messages have

been marked deleted. However, the POP3 server does not carry state information across

POP3 sessions. This lack of state information across sessions greatly simplifies the

implementation of a POP3 server.

University of Babylon

College of Information Technology

Department of Information Networks

4
th

 Stage, Lecture 6

8

IMAP

With POP3 access, once Bob has downloaded his messages to the local machine, he can

create mail folders and move the downloaded messages into the folders. Bob can then delete

messages, move messages across folders, and search for messages (by sender name or

subject). But this paradigm—namely, folders and messages in the local machine—poses a

problem for the nomadic user, who would prefer to maintain a folder hierarchy on a remote

server that can be accessed from any computer. This is not possible with POP3—the POP3

protocol does not provide any means for a user to create remote folders and assign messages

to folders.

To solve this and other problems, the IMAP protocol was invented. Like POP3, IMAP is a

mail access protocol. It has many more features than POP3, but it is also significantly more

complex. (And thus the client and server side implementations are significantly more

complex.)

An IMAP server will associate each message with a folder; when a message first arrives at

the server, it is associated with the recipient’s INBOX folder. The recipient can then move

the message into a new, user-created folder, read the message, delete the message, and so on.

The IMAP protocol provides commands to allow users to create folders and move messages

from one folder to another. IMAP also provides commands that allow users to search remote

folders for messages matching specific criteria. Note that, unlike POP3, an IMAP server

maintains user state information across IMAP sessions—for example, the names of the

folders and which messages are associated with which folders.

Another important feature of IMAP is that it has commands that permit a user agent to obtain

components of messages. For example, a user agent can obtain just the message header of a

message or just one part of a multipart MIME message. This feature is useful when there is a

low-bandwidth connection (for example, a slow-speed modem link) between the user agent

and its mail server. With a low-bandwidth connection, the user may not want to download all

of the messages in its mailbox, particularly avoiding long messages that might contain, for

example, an audio or video clip.

Web-Based E-Mail

More and more users today are sending and accessing their e-mail through their Web

browsers. Hotmail introduced Web-based access in the mid 1990s. Now Web-based e-mail is

also provided by Google, Yahoo!, as well as just about every major university and

corporation. With this service, the user agent is an ordinary Web browser, and the user

communicates with its remote mailbox via HTTP. When a recipient, such as Bob, wants to

access a message in his mailbox, the e-mail message is sent from Bob’s mail server to Bob’s

browser using the HTTP protocol rather than the POP3 or IMAP protocol. When a sender,

such as Alice, wants to send an e-mail message, the e-mail message is sent from her browser

to her mail server over HTTP rather than over SMTP. Alice’s mail server, however, still

sends messages to, and receives messages from, other mail servers using SMTP.

