
3D Stress Tensors 

3D Stress Tensors, Eigenvalues and Rotations 

Recall that we can think of an n x n matrix Mij as a transformation matrix that 

transforms a vector xi to give a new vector yj (first index = row, second index = 

column), e.g. the equation Mx = y. We define x to be an eigenvector of M if there 

exists a scalar λ such that 

Mx = λx                      (34) 
 
The value(s) λ are called the eigenvalues of M. We can λnd the eigenvalues simply, as 

follows. First we can infer that 

Mx- λ x = 0           (35) 

where 0 is a zero (null) vector. Then we can simplify this by introducing the Identity 

matrix I of the same size as M 

(M -λI)x = 0          (36) 

This implies that det(M -λI) = 0, since the only solution is found where the size of  

M -λI 

is zero, where det signifies the determinant. We are interested in solving this problem 

for 3x3 matrices,  that is for 3D states of stress (or, as we shall see later, strain). You 

will recall the checkerboard pattern for finding a determinant of a matrix A; 
 

 

 (
+ − +
− + −
+ − +

)               (37) 

We find the determinant of A by multiplying each of the terms in any row or column 

by (i) the corresponding sign from the checkerboard pattern and (ii) the determinant 

of the 2x2 matrix left out once that term's row and column have been removed. e.g. 
 

 

 

 

 

So if we have a square symmetric stress matrix σij then its eigenvalues will be 

given by 



 

 

 This is a cubic in. λ For many cases, many of the indices will be zero and the 

cubic will be easy to solve. Typically, the first root is found by inspection (e.g. λ = 2 

is a root), at which point the problem can be reduced to a quadratic by substitution 

and the remaining roots found trivially. 

To find the eigenvectors we then solve the equation (σ-λI) x = 0 for each of the n 

eigenvalues in turn. For a 3x3 (square) symmetric (stress) matrix, this will produce 

three linearly independent eigenvectors. Each eigenvector will be scale-independent, 

since if x is an eigenvector, it is trivial to show that αx is also an eigenvector. 

It turns out to be possible to show that in this case the eigenvalues are the principal 

stresses, and the eigenvectors are the equations of the axes along which the principal 

stresses act. 
 

Aside: Calculating Shear Stresses in Sections 

Question. A bar of radius 50mm transmits 500kW and 6000 rpm. What is the shear 

stress is the bar? 
 

Solution. We remember that Power = Torque x Angular Velocity, 
       P=Tω                                  (40) 
and that the shear stress τ is related to the torque through the polar moment of inertia J 

and the outer radius R by 

T/J= τ /R                                       (41) 

J is given, for any section by 𝐽 = ∫ 𝑟2 𝑑𝐴           so, a shaft of inner radius r 

and outer radius R, 

𝐽 =
1

2
𝜋(𝑅2 − 𝑟2)                                               (42) 

Therefore, in this case, 

𝐽 =
1

2
𝜋(0.054) = 9.187 × 10−6𝑚4                   (44) 

𝑇 = 𝑃/𝜔        5,000/(6000× (
2𝜋

60
) = 795.78 𝑁𝑚             (45) 

So the result is given by 

𝜏 =
𝑇𝑅

𝐽
= 795.78 ×

0.05

9.817
× 10−6 = 4.05𝑀𝑃𝑎                 (46) 

 

  

 

 



Diagonalising matrices 

 
In the previous section, we found the eigenvectors and eigenvalues of a 

matrix M. Consider the matrix of the eigenvectors X composed of each of 

the (column) eigenvectors x in turn, e.g. Xij = xi; j, and the matrix D with 

the corresponding eigenvalues on the leading diagonal and zeroes as the 

off-axis terms, e.g. Dii = λi and Dij = 0 i ≠ j. So for a 3x3 matrix M, 

D=(
λ 0 0
0 λ 0
0 0 λ

).  By inspection, we can see that 

 

 

 𝑀𝑋 =  𝑋𝐷                                   (46) 

 

 because for each column, Mx = λx.  

Hence, D = 𝑋−1 − 𝑀𝑋                                                                                        (47) 

A neat example of this is finding large powers of a matrix. For example, 

𝑀2
 =  (𝑋𝐷𝑥−1)(𝑋𝐷𝑥−1)  =  (𝑋𝐷2𝑥−1)                                    (48) 

and so on for higher powers. 

It turns out that the matrix of eigenvectors X is highly significant. Later, we will look 

at how to rotate a stress matrix in the general case. However, you will already be able 

to see that it is always possible to rotate the stress matrix using X, the rotation matrix 

composed of the unit eigenvectors, to produce a matrix of eigenvalues D. It turns out 

that this matrix is the matrix of principal stresses, i.e. that the eigenvalues of the stress 

matrix are the principal stresses. 
 

 

Principal Stresses in 3 Dimensions 

Generalising the 2D treatment of the inclined plane to 3D, we consider an inclined 

plane. We take a cube with a stress state referred to the 1; 2; 3 axes, and then cut it 

with an inclined plane with unit normal x = (𝑙,  𝑚,  𝑛) and area A. 

The components of x along the 1; 2; 3 axes are its direction cosines, that is, the 

cosines of the angles between x and the axes. We require that the stress _ normal to 

the inclined plane is a principal stress, that is that there are no shears on the inclined 

plane, Figure 15 First we notice that the components of σ in the 1,2 and 3 directions 

are σ 𝑙, σ 𝑚 and σ 𝑛, respectively. The areas of the triangles forming the walls of the 

original cube are also 
𝐾𝑂𝐿 =  𝐴𝑙            𝐽𝑂𝐾 =  𝐴𝑚             𝐽𝑂𝐿 =  𝐴𝑛               (49) 

If we resolve all the forces in the 1 direction, we find that 
 

𝜎𝐴𝑙 − 𝜎11𝐴𝑙 − 𝜎21𝐴𝑚 − 𝜎31𝐴𝑛 = 0                      (50) 



 

(𝜎 − 𝜎11)𝑙 − 𝜎21𝑚 − 𝜎31𝑛 = 0                                  (51) 

 

 

 

Figure 15: Inclined plane cut through the unit stress cube to give a principal stress σ 

along the x vector. 

 

 

Similarly for the other two axes, 

 

 

     −𝜎12𝑙 + ( 𝜎 − 𝜎22)𝑚 − 𝜎32𝑛 =  0                                 (52) 

              − 𝜎31𝑙 −𝜎32𝑚 + (𝜎 − 𝜎33)𝑛       = 0                                 (53) 

 



So we can write this set of simultaneous equations as (multiplying through by -1 for 

convenience and requiring that σij = σji) 

 
 

  

The only nontrivial solution is where the determinant of the left-hand matrix is zero, 

so by comparison with Equation 36 we find that the solutions for σ are the 

eigenvalues of the stress matrix. This is given by 

 

 

 

 The three roots of this equation are the principal stresses. Note that the three 

coefficients of this equation determine the principal stresses. Therefore these 

coefficients cannot change under a rotation of the coordinate axes and are invariant. 

These invariants are 

 

 

 

 

 The first invariant we identify as 3 times the hydrostatic stress _hyd, which is 

the average of the σii. When we come to consider yielding, the hydrostatic stress will 

assume a new significance. This also implies that this hydrostatic stress is the same, in 

any coordinate system. 

 

 

 Example: Finding principal stresses 

Question. A material is subject to the following stress state. What are the principal 

stresses in the material? 
 

 



 

 

 
 

 

 

 

 

  

Example: Stresses on crystal axes 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 



Strain and Elasticity 

 

 



 

 

Notice that e = ε + !. Thus, like stress, strain is by definition a symmetric tensor and 

has only 6 independent components. 
 There is a problem however! Conventionally, a shear strain is defined by the 

shear angle  produced in simple shear, below. 
 So in this case the tensor shear strain ε12 = 1/2 (e12 + e21) = 1 

1/2 (γ + 0) = γ/2. This problem is simply one of definition. The notation used in each 

case is quite standard so this is easily 

overcome. 



 

 

 

 Figure 19: Definition of the simple shear strain γ . 

 

 

 Isotropic Elasticity 

 

 In general, very few materials are actually isotropic, even elastically. This is 

because single crystals are usually elastically and plastically anisotropic, and because 

most manufacturing processes produce some `uneven-ness' in the orientation 

distribution, or texture.  Therefore we need to consider, in the general case, how to 

convert from stress to strain and vice-versa. 
 

 Starting with the case of simple isotropic elasticity, the basic equations are 

based on Hooke's Law, which in the general case gives 
 𝐸𝜀1 =  𝜎1 − 𝑣(𝜎2  + 𝜎3)                                     

 

 where E is Young's Modulus and 𝑣  is Poisson's ratio. Stresses and strains are 

super posable, so we can combine stresses along di_erent axes. In shear, a similar 

equation can be written, 𝜏 = Gγ, where G is the Shear Modulus. In tensor notation, 

because ε12 = γ/2, this gives σij = 2Gεij 
 



 

 
However, it is easy to see that E, 𝑣 and G must be inter-related for an isotropic 

material, as follows consider a system in a state of simple shear stress, 

(
0 𝜎 0
𝜎 0 0
0 0 0

) 

 

 

 Using Mohr's Circle, we can rotate this to find the Principal Stresses, which 

are that σ1 = σ  and  -σ2 = σ 
So we can find the strains along the principal axes by using Hookes Law, so Eε1 =σ -

𝑣(−𝜎 + 0)=𝜎(1 + 𝑣), 𝑎𝑛𝑑 𝐸𝜀2 = −𝜎 − 𝑣(𝜎 + 0) = −𝜎(1 + 𝑣) . 

We can then use Mohr's Circle for strain, in exactly the same way as for stress, Figure 
below Since the rotation in Mohr's circle is the same in the two cases, the strains must 

be equivalent and so ε12 in the original axes is given by 

 



 𝜀12 =
𝜎

𝐸
(1 + 𝑣) 

 

By comparison with Equation above we can therefore say that 

 𝐺 =
𝐸

2(1+𝑣)
 

 Hence for an isotropic material there are only two independent elastic 

constants. We can also define other related Elastic constants that are useful in di_erent 

stress states. The Bulk Modulus or dilatational modulus K is useful for hydrostatic 

stress problems, and is defined by 

 


