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3.6 Laminar flow in a concentric annulus

The flow of non-Newtonian fluids through concentric and eccentric annuli
represents an idealisation of several industrially important processes. One
important example is in oil well drilling where a heavy drilling mud is
circulated through the annular space around the drill pipe in order to carry the
drilling debris to the surface. These drilling muds are typically either Bingham
plastic or power-law type fluids. Other examples include the extrusion
of plastic tubes and pipes in which the molten polymer is forced through
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an annular die, and the flow in double-pipe heat exchangers. In all these
applications, it is often required to predict the frictional pressure gradient to
sustain a fixed flow rate or vice versa. In this section, the isothermal, steady and
fully-developed flow of power-law and Bingham plastic fluids in concentric
annulus is analysed and appropriate expressions and/or charts are presented
which permit the calculation of pressure gradient for a given application.
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Figure 3.17 Flow in a concentricannulus

The calculation of the velocity distribution and the mean velocity of a
fluid flowing through an annulusof outer radiusR and inner radius �R is
more complex than that for flow in a pipe or betweentwo parallel planes
(Figure3.17), thoughthe force balanceon an elementof fluid canbe written
in a mannersimilar to that usedin previoussections.If the pressurechanges
by an amountp as a consequenceof friction in a length L of annulus,
the resulting force can be equatedto the shearingforce acting on the fluid.
Considerthe flow of the fluid situatedat a distancenot greaterthan r from
the centrelineof the pipe. The shearforce actingon this fluid comprisestwo
parts:one is the dragon its outersurface(r D R) which canbe expressedin
termsof the shearstressin the fluid at that location; the othercontributionis
thedragoccurringat the inner (solid) boundaryof theannulus,i.e. at r D �R.
This componentcannotbe estimatedat present,however.Alternatively, this
difficulty canbeobviatedby consideringtheequilibriumof a thin ring of fluid
of radiusr and thicknessdr (Figure3.17).The pressureforce actingon this
fluid elementis:

2�rdrfp� .pCp/g
The only other force acting on the fluid elementin the z-direction is that
arisingfrom the shearingon both surfacesof the element.Note that,not only
will the shearstresschangefrom r to r C dr but the surfaceareaover which
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shearing occurs will also depend upon the value ofr. The net force can be
written as:�
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The shear stress distribution across the gap is obtained by integration:
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Because of the no-slip boundary condition at both solid walls, i.e. atr D �R
andr D R, the velocity must be maximum at some intermediate point, say at
r D �R. Then, for a fluid without a yield stress, the shear stress must be zero
at this position and for a viscoplastic fluid, there will be a plug movingen
masse. Equation (3.76) can therefore be re-written:
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where� D r/R, the dimensionless radial coordinate.

3.6.1 Power-law fluids

For this flow, the power-law fluid can be written as:

�rz D �m
����dVzdr

����n�1(dVz
dr

�
.3.78/

It is important to write the equation in this form whenever the sign of the
velocity gradient changes within the flow field. In this case, (dVz/dr) is
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positive for� � � � � and negative for� � � � 1. Now equation (3.78) can
be substituted in equation (3.77) and integrated to obtain
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where subscripts ‘i’ and ‘o’ denote the inner (� � � � �) and outer (� � � � 1)
regions respectively andx is a dummy variable of integration. The no-slip
boundary conditions at� D � and � D 1 have been incorporated in equation
(3.79). Clearly, the value of� is evaluated by settingVzi D Vz0 at � D �, i.e.
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The volumetric flow rate of the fluid,Q, is obtained as:
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Clearly, equations (3.80) and (3.81) must be solved and integrated simul-
taneously to eliminate� and to evaluate the volumetric rate of flow of liquid,
Q. Analytical solutions are possible only for integral values of (1/n), i.e.
for n D 1, 0.5, 0.33, 0.25, etc. Thus, Fredrickson and Bird [1958] evaluated
the integral in equation (3.81) for such values ofn and, by interpolating
the results for the intermediate values of power law index, they presented a
chart relating non-dimensional flowrate, pressure drop,� and n. However,
the accuracy of their results deteriorates rapidly with decreasing values of
n and/or .1� �/− 1, i.e. with narrowing annular region. Subsequently,
however, Hanks and Larsen [1979] were able to evaluate the volumetric flow
rate,Q, analytically and their final expression is:
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Table 3.2 Values of� computed from equation (3.80) [Hanks and Larson,
1979]

�

n 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

0.10 0.3442 0.4687 0.5632 0.6431 0.7140 0.7788 0.8389 0.8954 0.9489
0.20 0.3682 0.4856 0.5749 0.6509 0.7191 0.7818 0.8404 0.8960 0.9491
0.30 0.3884 0.4991 0.5840 0.6570 0.7229 0.7840 0.8416 0.8965 0.9492
0.40 0.4052 0.5100 0.5912 0.6617 0.7259 0.7858 0.8426 0.8969 0.9493
0.50 0.4193 0.5189 0.5970 0.6655 0.7283 0.7872 0.8433 0.8972 0.9493
0.60 0.4312 0.5262 0.6018 0.6686 0.7303 0.7884 0.8439 0.8975 0.9494
0.70 0.4412 0.5324 0.6059 0.6713 0.7319 0.7893 0.8444 0.8977 0.9495
0.80 0.4498 0.5377 0.6093 0.6735 0.7333 0.7902 0.8449 0.8979 0.9495
0.90 0.4572 0.5422 0.6122 0.6754 0.7345 0.7909 0.8452 0.8980 0.9495
1.00 0.4637 0.5461 0.6147 0.6770 0.7355 0.7915 0.8455 0.8981 0.9496

The only unknown now remaining is�, which locates the position where the
velocity is maximum. Table 3.2 presents the values of� for a range of values
of � andn.

Example 3.10

A polymer solution exhibits power-law behaviour withn D 0.5 andm D 3.2 PaÐs0.5.
Estimate the pressure gradient required to maintain a steady flow of 0.3 m3/min of this
polymer solution through the annulus between a 10 mm and a 20 mm diameter tube.

Solution

Here, R D 20

2
ð 10�3 D 0.01 m

�R D 10

2
ð 10�3 D 0.005 m

or � D 0.5

From Table 3.2, for� D 0.5 andn D 0.5, � D 0.728
Substituting these values in equation (3.82)(
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60
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ð f.1� 0.7282/.0.5C1//0.5� 0.5.0.5�1//0.5.0.7282 � 0.52/.0.5C1//0.5g

and solving:
�p
L
D 169 kPa/m�




