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Terminal falling velocities 

 In many process design calculations, it is necessary to know the terminal
 velocity of a sphere settling in a fluid under the influence of the gravitational
 field. When a spherical particle at rest is introduced into a liquid, it acceler-ates
 until the buoyant weight is exactly balanced by the fluid dynamic drag.
 Although the so-called terminal velocity is approached asymptotically, the
 effective transition period is generally of short duration for Newtonian and
 power-law fluids [Chhabra et al., 1998]. For instance, in the creeping flow
 regime, the terminal velocity is attained after the particle has traversed a path
.of length equal to only a few diameters
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For gravity settling of a sphere at its terminal velocity the drag force on it,
FD, is equal to the buoyant weight, i.e.
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Combining equations (5.4) and (5.10), the terminal velocity of a sphere in a
power-law fluid.Re< 1/:
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In shear-thinning power-law fluids, therefore, the terminal falling velocity
shows a stronger dependence on sphere diameter and density difference than
in a Newtonian fluid.

This method of calculation is satisfactory provided it is known a priori
that the Reynolds number is small (<1). As the unknown velocity appears in
both the Reynolds number and the drag coefficient, it is more satisfactory to
work in terms of a new dimensionless group, Ar, the so-called Archimedes
number defined by:

Ar D CDRe2/.2�n/ D 4
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For any given sphere and power-law liquid combination, the value of the
Archimedes number can be evaluated using equation (5.12). The sphere
Reynolds number can then be expressed in terms of Ar andn as follows:
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b D 0.954
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The values calculated from equations (5.13) to (5.15) represent about 400 data
points in visco-inelastic fluids (0.4� n < 1; 1� Re� 1000; 10� Ar � 106)
with an average error of 14% and a maximum error of 21%. Finally, in
view of the fact that non-Newtonian characteristics exert little influence on
the drag, the use of predictive correlations for terminal falling velocities in
Newtonian media yields only marginally larger errors for power-law fluids.
Finally, attention is drawn to the fact that the estimation of terminal velocity in
viscoplastic liquids requires an iterative solution, as illustrated in example 5.4.
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Example 5.3

For spheres of equal terminal falling velocities, obtain the relationship between diam-
eter and density difference between particle and fluid for creeping flow in power law
fluids.

Solution

From equation (5.11), the terminal settling velocity of a sphere increases with both its
density and size. For two spheres of different diametersdA, dB and densities,�SA and
�SB, settling in the same fluid, the factorX is a function ofn only (see Table 5.1) and
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Thus for pseudoplastic fluids.n < 1/, the terminal velocity is more sensitive to both
sphere diameter and density difference than in a Newtonian fluid and it should, in
principle, be easier to separate closely sized particles. For equal settling velocities,
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For n D 1, this expression reduces to its Newtonian counterpart.�

Example 5.4

Estimate the terminal settling velocity of a 3.18 mm steel sphere.densityD
7780 kg/m3/ is a viscoplastic polymer solution of density 1000 kg/m3. The flow curve
for the polymer solution is approximated by the three parameter Herschel–Bulkley
model as:

� D 3.3C 3.69. P
/0.53

The settling may be assumed to occur in creeping flow region.

Solution

In the creeping flow region, the drag coefficient is given by equation (5.9), i.e.
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The other dimensionless groups are:
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Trial and error solution is needed as the unknown velocity appears in all of these
groups. The other values (in S.I. units) are:

�H0 D 3.3 Pa; m D 3.69 PaÐs0.53; n D 0.53; d D 3.18ð 10�3 m

�s D 7780 kg/m3; � D 1000 kg/m3; g D 9.81 m/s2

Substituting these values:

CD D 0.2813

V2 or V D
s

0.2813

CD

ReD .1000/.3.18ð 10�3/0.53V2�0.53

3.69
D 12.86V1.47

BiŁ D �H0
m.V/d/n

D 3.3ð .3.18ð 10�3/0.53

3.69ð V0.53 D 0.0424V�0.53

Assume a value ofV D 15 mm/sD 15ð 10�3 m/s.

∴ BiŁ D 0.393; ReD 12.86ð .15ð 10�3/1.47 D 0.0268

Now from equation (5.9), the value ofCD:

CD D 24

Re
.1C BiŁ/ D 24

0.0268
.1C 0.393/

D 1248

∴ the velocity,V D
s

0.2813

CD
D
r

0.2813

1248
D 0.015 m/sD 15 mm/s

which matches with the assumed value. Also, in view of the small value of the 
Reynolds number (Remax ¾ 70, from equation 5.8), the assumption of the creeping 
flow is justified.�




