Non-Newtonian Flow in the Process Industrizkt

5.2.4 Terminal falling velocities

In many process design calculatioitss necessary to know the terminal
velocity of a sphere settlingn a fluid under the influencef the gravitational
field. When a sphericadarticleat rest is introducethto a liquid, it acceler-ates
until the buoyant weight is exactlyalancedy the fluiddynamicdrag.
Although the so-calleterminalvelocity is approachedsymptotically the
effectivetransitionperiod is generallpf short duratiorfor Newtonianand
power-law fluids [Chhabra etla 1998]. For instancen the creepingdlow
regime,the terminalvelocity is attainedafter the particldas traversed a path
.of length equato only a few diameters
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For gravity settling of a sphere at its terminal velocity the drag force on it,
Fp, is equal to the buoyant weight, i.e.

3

wd
Fp= ?(ps - 0)g (5.10

Combining equations (5.4) and (5.10), the terminal velocity of a sphere in a
power-law fluid(Re < 1):

A/n)
gd" ™ (o5 — p)
V= ) (5.11)

In shear-thinning power-law fluids, therefore, the terminal falling velocity
shows a stronger dependence on sphere diameter and density difference than
in a Newtonian fluid.

This method of calculation is satisfactory provided it is known a priori
that the Reynolds number is sma# ). As the unknown velocity appears in
both the Reynolds number and the drag coefficient, it is more satisfactory to
work in terms of a new dimensionless group, Ar, the so-called Archimedes
number defined by:

4
Ar — CDReZ/(Z—n) — égd(2+,1)/(2_,l)(ps _ p)pn/(Z—n)mZ/(n—Z) (512)

For any given sphere and power-law liquid combination, the value of the
Archimedes number can be evaluated using equation (5.12). The sphere
Reynolds number can then be expressed in terms of Amaasl follows:

Re= aAr® (5.13)
.51
a=01 exp(o—5 —073n (5.19)
n
954
b= 0.954 _ 0.16 (5.15)

n

The values calculated from equations (5.13) to (5.15) represent about 400 data
points in visco-inelastic fluids (8 < n < 1; 1 < Re < 1000; 10< Ar < 1(f)

with an average error of 14% and a maximum error of 21%. Finally, in
view of the fact that non-Newtonian characteristics exert little influence on
the drag, the use of predictive correlations for terminal falling velocities in
Newtonian media yields only marginally larger errors for power-law fluids.
Finally, attention is drawn to the fact that the estimation of terminal velocity in
viscoplastic liquids requires an iterative solution, as illustrated in example 5.4.
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Example 5.3

For spheres of equal terminal falling velocities, obtain the relationship between diam-
eter and density difference between particle and fluid for creeping flow in power law
fluids.

Solution

From equation (5.11), the terminal settling velocity of a sphere increases with both its
density and size. For two spheres of different diametgrsiz and densitiespg, and
psg, settling in the same fluid, the factdris a function ofn only (see Table 5.1) and

, am
Va _ di™(psa = p)

Ve dy™(oss — p)

Thus for pseudoplastic fluidg: < 1), the terminal velocity is more sensitive to both
sphere diameter and density difference than in a Newtonian fluid and it should, in
principle, be easier to separate closely sized particles. For equal settling velocities,

dp _ (pSA —p YotD
dy pPsB — P

For n = 1, this expression reduces to its Newtonian counterpart.
Example 5.4

Estimate the terminal settling velocity of a 3.18 mm steel sphetensity=
7780kg/n) is a viscoplastic polymer solution of density 1000 kd/fihe flow curve

for the polymer solution is approximated by the three parameter Herschel—Bulkley
model as:

7 = 3.3+ 3.69()°%
The settling may be assumed to occur in creeping flow region.
Solution

In the creeping flow region, the drag coefficient is given by equation (5.9), i.e.

24
Cp=—(1+Bi* 5.9
D Re( + BI*) (5.9
The other dimensionless groups are:
dgd (ps—p
Cp=-">
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Trial and error solution is needed as the unknown velocity appears in all of these
groups. The other values (in S.I. units) are:

! =33Pa; m=369Pas’? n =053 d=318x10°m
ps = 7780kg/m; p =1000kg/mi; g=9.81m/¢

Substituting these values:

0.2813 0.2813
p=——0p— Or V=
1% Cp
1000)(3.18 x 1073)0-53y2-053
Re— (1000318107 = 1286V
3.69
LT 33x(318x107%)°% 0.04247-053
- n o 0.53 -
m(V /d) 369x V

Assume a value of = 15mm/s= 15 x 103 m/s.
O Bi* = 0.393; Re= 1286 x (15 x 10~ = 0.0268

Now from equation (5.9), the value dfp:

24 24
Cp= o (L+Bi") = 5o (140399

~ 0.0268
= 1248

02813  0.2813

O the velocity,V = =
Y, Cp 1248

= 0.015m/s= 15mm/s

which matcheswith the assumedvalue. Also, in view of the small value of the
Reynoldsnumber (Renax ~ 70, from equation5.8), the assumptionof the creeping
flow is justified.





