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The calculus of
trigonometric
functions

Assumed knowledge

The content of the modules:

• Trigonometric functions and circular measure

• Introduction to differential calculus

• Integration.

Motivation

It is an interesting exercise to sit back and think about how we have developed the topic

of trigonometry during the earlier secondary school years.

We commenced by looking at ratios of sides in a right-angled triangle. This enabled us to

find unknown sides and angles. We extended this to include non-right-angled triangles

using the sine and cosine rules.

In the module Trigonometric functions and circular measure, we redefined the sine and

cosine functions in terms of the coordinates of points on the unit circle. This enabled

us to define the sine and cosine of angles greater than 90◦ and to plot the graphs of the

trigonometric functions and discover their periodic nature.

The sine and cosine functions are used to model periodic phenomena in nature, such as

waves, tides and signals. Indeed, these functions are used to model all sorts of oscillatory

motion arising in a range of subjects, including economics and ecology.

In this module, we continue this development by applying the ideas and techniques of

calculus to the trigonometric functions. For example, if we wish to analyse the motion of

a particle modelled by a trigonometric function, we can use calculus to find its velocity

and acceleration.

The simplicity of the results obtained by doing this is amazing and has wide-ranging

impact in physics and electrical engineering, and indeed in any area in which periodic

motion is being modelled.
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Content

Review of radian measure

We saw in the module Trigonometric functions and circular measure that angles can be

naturally defined using arc length.

We define 1 radian (written as 1c ) to be the angle subtended in the unit circle by an arc

length of one unit.

y

x
O

1�

(0,1)

(0,–1)

(1,0)(–1,0)

1

Since the circumference of the unit circle is 2π and the angle in one revolution is 360◦,

we can relate the two units by 2πc = 360◦ or

π= 180◦.

(As usual, we will drop the superscript c when it is clear that the angle under discussion

is in radians.) Many commonly occurring angles can be expressed in radians as fractions

of π. For example, 60◦ = π
3 and 330◦ = 11π

6 .

O

rθ

ℓ

We have also seen that the arc length ` of a sector of a circle

of radius r , containing an angle θ (in radians), is given by

`= rθ,

while the area A of the sector is given by

A = 1

2
r 2θ.
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An important limit

In order to apply calculus to the trigonometric functions, we will need to evaluate the

fundamental limit

lim
x→0

sin x

x
,

which arises when we apply the definition of the derivative of f (x) = sin x.

It must be stressed that, from here on in this module, we are measuring x in radians.

You can see that attempting to substitute x = 0 into
sin x

x
is fruitless, since we obtain the

indeterminate form ‘zero over zero’. On the other hand, if we try substituting say x = 0.1

(in radians), then the calculator gives 0.998. . . , and if we try x = 0.01, we get 0.99998. . . .

We guess that, as x approaches 0, the value of
sin x

x
approaches 1. We will now give a nice

geometric proof of this fact.

Consider a sector O AB of the unit circle containing an acute angle x, as shown in the

following diagram. Drop the perpendicular BD to O A and raise a perpendicular at A to

meet OB produced at C . Since O A =OB = 1, we have BD = sin x and AC = tan x.

O
x

1

C

AD

B

The area of the sector O AB is
1

2
x. The sector O AB clearly contains the triangle O AB and

is contained inside the triangle O AC . Hence, comparing their areas, we have

Area 4O AB ≤ 1

2
x ≤ Area 4O AC =⇒ 1

2
O A ·BD ≤ 1

2
x ≤ 1

2
O A · AC

=⇒ 1

2
sin x ≤ 1

2
x ≤ 1

2
tan x

=⇒ sin x ≤ x ≤ tan x.

Now, since tan x = sin x

cos x
and since sin x > 0 for 0 < x < π

2
, we can divide both inequalities

by sin x to obtain

1 ≤ x

sin x
≤ 1

cos x
.
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Since cos x approaches 1 as x approaches 0, we see that

x

sin x
→ 1 as x → 0.

Taking the reciprocal, it follows that

sin x

x
→ 1 as x → 0.

(Here we have used the pinching theorem and the algebra of limits, as discussed in the

module Limits and continuity.)

Thus we can write

lim
x→0

sin x

x
= 1.

Note that this means that, if the angle x is small, then sin x ≈ x. This fact is often used by

physicists when analysing such things as a simple pendulum with small angle.

Exercise 1

Using the limit above, prove that

lim
x→0

tan x

x
= 1.

Other related limits can be found by manipulating this basic limit.

Example

Find

lim
x→0

sin2x

3x
.

Solution

We can write

sin2x

3x
= sin2x

2x
× 2

3
.

If we let u = 2x, then as x → 0, we have u → 0. Hence

lim
x→0

sin2x

3x
= 2

3
lim
u→0

sinu

u
= 2

3
.
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Exercise 2

Find

lim
x→0

sin3x + sin7x

5x
.

Exercise 3

a Show that lim
x→0

1−cos x

x2 = 1

2
.

b Deduce that cos x ≈ 1− 1
2 x2, for small x.

Differentiating trigonometric functions

The derivative of sine

Since the graph of y = sin x is a smooth curve, we would like to find the gradient of the

tangent to the curve at any point on it.

Before doing this, we derive a useful trigonometric identity that will assist us.

Using the compound-angle formulas, we have

sin(A+B)− sin(A−B) = sin A cosB +cos A sinB − (sin A cosB −cos A sinB)

= 2 cos A sinB.

If we put C = A +B and D = A −B , we can add these equations to obtain A = 1
2 (C +D)

and subtract them to obtain B = 1
2 (C −D). Substituting these back, we obtain the sine

difference formula:

sinC − sinD = 2 cos
(C +D

2

)
sin

(C −D

2

)
.

To find the derivative of sin x, we return to the first principles definition of the derivative

of y = f (x):

d y

d x
= lim

h→0

f (x +h)− f (x)

h
.

Substituting y = sin x, we have

d y

d x
= lim

h→0

sin(x +h)− sin x

h
.
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Applying the sine difference formula, we have

lim
h→0

sin(x +h)− sin x

h
= lim

h→0

2 cos
(
x + h

2

)
sin

(h
2

)
h

.

We can put u = h
2 . Then u → 0 as h → 0. So the limit becomes

d y

d x
= lim

u→0

2 cos(x +u) sinu

2u

=
(

lim
u→0

cos(x +u)
)
×

(
lim
u→0

sinu

u

)
= cos x ×1

= cos x.

We can thus conclude that

d

d x
(sin x) = cos x.

This result is both simple and surprising, and students need to commit it to memory.

The derivation above involved a number of ingredients and is often difficult for students

the first time through.

Derivatives of other trigonometric functions

Now that the derivative of sine is established, we can use the standard rules of calculus

— the chain, product and quotient rules — to proceed.

Since cos x = sin
(
x + π

2

)
, we can apply the chain rule to see that

d

d x
(cos x) = d

d x

(
sin

(
x + π

2

))
= cos

(
x + π

2

)
=−sin x.

Thus

d

d x
(cos x) =−sin x.

This is also a simple and surprising result that needs to be committed to memory.
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The following graphs illustrate what is happening geometrically. If we draw the tangent

to the curve y = sin x at a point with 0 < x < π
2 , then the tangent clearly has positive

gradient, while a tangent to y = cos x, in the same range, clearly has negative gradient.

y

x
0

1
y  = sin x

4 2
y

x
0

1
y  = cos x

4 2

The derivative of cos x can also be found by using first principles.

Exercise 4

a Show that

cosC −cosD =−2 sin
(C +D

2

)
sin

(C −D

2

)
.

b Show by first principles that

d

d x
(cos x) =−sin x.

Exercise 5

By writing tan x = sin x

cos x
and applying the quotient rule, prove that

d

d x
(tan x) = sec2 x.
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Students need to remember the derivatives of sin, cos and tan.

The rules of calculus can also be used to find the derivatives of the reciprocal functions.

Exercise 6

Show that

a
d

d x
(cosec x) =−cosec x cot x

b
d

d x
(sec x) = sec x tan x

c
d

d x
(cot x) =−cosec2 x.

These three derivatives need not be committed to memory.

Further examples

Example

Use the rules of calculus to differentiate each of the following functions with respect to x:

1 4 sin(2x2)

2 x cos(2x)

3 e3x tan(4x).

Solution

1
d

d x

(
4 sin(2x2)

)= 16x cos(2x2)

2
d

d x

(
x cos(2x)

)=−2x sin(2x)+cos(2x)

3
d

d x

(
e3x tan(4x)

)= 4e3x sec2(4x)+3e3x tan(4x).

Exercise 7

Show that

d

d x
loge

(1+ sin x

cos x

)
= sec x.
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Applications of the derivatives

Armed with the ability to differentiate trigonometric functions, we can now find the

equations of tangents to trigonometric functions and find local maxima and minima.

Example

1 Find the equation of the tangent to the curve y = 2sin x +cos2x at the point x =π.

2 Find the minimum value of y = 2sin x +cos2x in the interval 0 ≤ x ≤ 2π.

Solution

1 The gradient of the tangent is given by
d y

d x
= 2cos x − 2sin2x = −2 at x = π. The

y-value at this point is 1. Hence, the equation of the tangent is

y −1 =−2(x −π) or, equivalently, y +2x = 1+2π.

2 Since the function is continuous, the minimum will occur either at an end point of

the interval 0 ≤ x ≤ 2π or at a stationary point. The y-value at each endpoint is 1. To

find the stationary points, we solve
d y

d x
= 0. This gives cos x = sin2x. To proceed, we

use a double-angle formula:

cos x = sin2x =⇒ cos x = 2 sin x cos x

=⇒ (1−2sin x) cos x = 0.

Hence cos x = 0 or sin x = 1
2 . The solutions in the range 0 ≤ x ≤ 2π are

x = π

2
,

3π

2
,
π

6
,

5π

6
.

The smallest y-value, which is −3, occurs at x = 3π

2
. Hence the minimum value is −3.

Exercise 8

Show that the function y = sin x

3+4cos x
is increasing in each interval in which the denom-

inator is not zero.

Exercise 9

Suppose an isosceles triangle has two equal sides of length a and equal base angles θ.

Show that the perimeter of the triangle is 2a(1+ cosθ). Deduce that, of all isosceles tri-

angles with fixed perimeter, the triangle of largest area is equilateral.
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Integrating trigonometric functions

Since integration is the reverse of differentiation, we have immediately that∫
cos x d x = sin x +C and

∫
sin x d x =−cos x +C .

Thus, for example, we can find the area under the sine curve between x = 0 and x =π, as

shown on the following graph.

Area =
∫ π

0
sin x d x = [−cos x

]π
0 = 2.

y

x
0

1

y  = sin x

2

More generally, since

d

d x
sin(ax +b) = a cos(ax +b) and

d

d x
cos(ax +b) =−a sin(ax +b),

we obtain, for a 6= 0,∫
cos(ax+b)d x = 1

a
sin(ax+b)+C and

∫
sin(ax+b)d x =− 1

a
cos(ax+b)+C .

From
d

d x
(tan x) = sec2 x, we obtain

∫
sec2 x d x = tan x +C .
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Example

Find

1
∫ π

2

0

(
1+cos2x

)
d x

2
∫ π

6

0

(
sin3x + sec2 2x

)
d x.

Solution

1
∫ π

2

0

(
1+cos2x

)
d x =

[
x + 1

2
sin2x

] π
2

0
= π

2

2
∫ π

6

0

(
sin3x + sec2 2x

)
d x =

[
−1

3
cos3x + 1

2
tan2x

] π
6

0
= 1

3
+
p

3

2
.

Exercise 10

a Find
∫ π

3

π
6

(sin2x +cos3x)d x.

b Differentiate x sin x, and hence find
∫ π

2

0
x cos x d x.

c Use the identity 1+ tan2 x = sec2 x to find
∫

tan2 x d x.

Special integrals

The two integrals∫
cos2θdθ and

∫
sin2θdθ

require some special attention. They are handled in similar ways.

To proceed, we make use of two trigonometric identities (a double-angle formula and

the Pythagorean identity):

cos2θ− sin2θ = cos2θ and cos2θ+ sin2θ = 1.

Adding these two identities, we have 2cos2θ = 1+cos2θ, and so we can replace cos2θ in

the integral with 1
2 (1+cos2θ). Thus

∫
cos2θdθ =

∫
1

2
(1+cos2θ)dθ = 1

2

(
θ+ 1

2
sin2θ

)
+C .



A guide for teachers – Years 11 and 12 • {15}

Exercise 11

Find
∫

sin2θdθ. (Follow the method used for cos2θ, but subtract the two identities

rather than adding them.)

Simple harmonic motion

Simple harmonic motion (SHM) is a special case of motion in a straight line which occurs

in several examples in nature. A particle P is said to be undergoing simple harmonic

motion when it moves backwards and forwards about a fixed point (the centre of motion)

so that its acceleration is directed back towards the centre of motion and proportional to

its displacement from the centre.

O P
x

Hence the displacement x of the particle P will satisfy the equation

d 2x

d t 2 =−n2x,

where n is a positive constant.

This is an example of a second order differential equation. It can be shown that the gen-

eral solution to this equation is x(t ) = A sinnt +B cosnt , where A and B are constants.

In the case where the particle starts at the origin, so x = 0 when t = 0, we have B = 0 and

so the function x(t ) = A sinnt is a solution to the differential equation. We can easily

check this:

x(t ) = A sinnt =⇒ d 2x

d t 2 =−n2 A sinnt =−n2x.

In the general case, since any trigonometric expression of the form A sinθ+B cosθ can

written in the form C sin(θ+α), we can write the general solution as

x(t ) =C sin(nt +α),

where C and α are constants. The constant α is called the phase shift of the motion

(and as we saw above can be taken as 0 if the particle begins at the origin). From our

knowledge of the trigonometric functions, we see that the amplitude of the motion is C

and the period is
2π

n
.
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We next derive a formula for the velocity of the particle, with the help of a very useful

expression for acceleration:
d 2x

d t 2 = 1

2

d

d x
(v2). We write the differential equation as

1

2

d

d x
(v2) =−n2x

and integrate with respect to x to obtain

v2 = K −n2x2,

where K is a constant. If the amplitude of the motion is C , then when x =C the velocity

is 0, and so K = n2C 2. Hence, we have

v2 = n2(C 2 −x2).

Example

A particle is moving in simple harmonic motion. Find a formula for the displacement

x(t ) of the particle (with x in metres and t in seconds) given that:

• the period of the motion is 16 seconds

• the particle passes through the centre of oscillation when t = 2

• the particle has a velocity of 2π m/s when t = 4.

What is the amplitude of the motion?

Solution

The general equation for simple harmonic motion is x =C sin(nt +α). Since the period

is 16, we have
2π

n
= 16, giving n = π

8
.

Also, since x = 0 when t = 2, we have C sin(2n +α) = 0. As C 6= 0, we may take 2n +α= 0,

and so α=−2n =−π
4

.

Finally, the velocity is given by

v = d x

d t
=C n cos(nt +α) = Cπ

8
cos

(π
8

t − π

4

)
.

Now, v = 2π when t = 4, giving
Cπ

8
· 1p

2
= 2π, and so C = 16

p
2.

Thus the equation for displacement is

x = 16
p

2 sin
(π

8
t − π

4

)
and the amplitude is 16

p
2.
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Exercise 12

Find the speed of a particle moving in SHM when it is passing through the centre, if its

period is π
p

2 seconds and its amplitude is 2 metres.

Example

In a certain bay, there is a low tide of 6 metres at 1am and a high tide of 10 metres at 8am.

Assuming that the tide motion is simple harmonic, find an expression for the height at

time t after 1am, and find the first time after 1am when the tide is 9 metres.

Solution

10m

8m

6m

Let t be the time in hours since 1am, and let x be the height of the tide in metres at

time t . Since the centre of the motion is at 8 m and the amplitude is 2 m, we can express

the height as x = 8+2sin(nt +α).

The period is 14 hours, so
2π

n
= 14, giving n = π

7
. Also, since x = 6 when t = 0, we may

take α=−π
2

. Hence the height of the tide is

x = 8+2sin
(π

7
t − π

2

)
.

(We can check that when t = 7, x = 10, as expected.)

Now, when x = 9, we have sin
(π

7
t − π

2

)
= 1

2
. The smallest solution is t = 14

3
, that is,

4 hours 40 minutes after 1am.

So the required time is 5:40am.
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Hooke’s law

An inextensible string is one which can bear a mass without altering its length. In prac-

tice, all strings are extensible, however the extension is usually very negligible. In the

case of a string which is extensible, Hooke’s law provides a simple relationship between

the tension in the string and the extension it experiences. It states that the tension in an

elastic string (or spring) is directly proportional to the extension of the string beyond its

natural length.

Thus, if T is the tension in the spring, then T = kx, where x is the extension and k is a

positive constant, sometimes called the stiffness constant for the spring.

Suppose that we have a particle of mass m attached to the bottom of a vertical spring with

stiffness constant k. Since the system is stationary, the tension in the spring is given by

mg , where g is the acceleration due to gravity. By Hooke’s law, the tension in the spring is

also equal to ke, where e is the extension of the natural length of the spring after the mass

is added. We let the position of the particle at this stage be O, and then further depress

the mass by a displacement x from O and release it. The tension T in the spring is now

T = k(e +x) = mg +kx. The resultant downward force is then

F = mg −T =−kx.

 

+x +m

This force produces an acceleration: by Newton’s second law of motion, F = m
d 2x

d t 2 . So

we have

d 2x

d t 2 =− k

m
x.

This is the differential equation for simple harmonic motion with n2 = k

m
. Hence, the

period of the motion is given by
2π

n
= 2π

√
m
k .

We can conclude that the larger the mass, the longer the period, and the stronger the

spring (that is, the larger the stiffness constant), the shorter the period.
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Links forward

Inverse trigonometric functions

The sine and cosine functions are not one-to-one, and therefore they do not possess

inverses. To overcome this problem, we have to restrict their domains, and find inverses

for these functions with restricted domains. These issues are discussed in the module

Functions II.

We will briefly discuss the sine function, and leave cosine as a directed exercise.

Note that sin0 = sinπ, and so our chosen domain cannot include both 0 and π. We can

see that sin is a one-to-one function on the interval [−π
2 , π2 ], but not on any larger interval

containing the origin.

We restrict the domain of y = sin x to [−π
2 , π2 ].

y

x
0

1

–1

y  = sin x

2

2

–
2

(    ,–1)

(    ,1)

–
2

This restricted function, with domain [−π
2 , π2 ] and range [−1,1], is one-to-one. Hence, it

has an inverse function denoted by f (x) = sin−1 x, which is read as inverse sine of x. (This

inverse function is also often denoted by arcsin x.)

It is important not to confuse sin−1 x with (sin x)−1 = 1

sin x
; these are two completely

different functions.
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The graph of y = sin−1 x is drawn as follows.

y

x
0 1–1

y  = sin-1 x

2

–
2

2(1,    )

(–1,     )–
2

The domain of sin−1 is [−1,1] and its range is [−π
2 , π2 ]. We can see from the graph that

sin−1 is an odd function, that is, sin−1(−x) = −sin−1 x. We can also see that it is an in-

creasing function.

An obvious (and interesting) question to ask is ‘What is its derivative?’

The derivative of inverse sine

We recall from the module Introduction to differential calculus that d y
d x × d x

d y = 1.

Let y = sin−1 x. Then x = sin y , and so

d x

d y
= cos y

=
√

1− sin2 y (since cos y ≥ 0)

=
√

1−x2.

Hence

d

d x
(sin−1 x) = 1p

1−x2
.

We observe from the graph of y = sin−1 x that the gradient of the curve is positive. We

can also see that the gradient approaches infinity as we approach x = 1 or x =−1.
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Using the chain rule, it is easy to show that

d

d x

(
sin−1 x

a

)= 1p
a2 −x2

and so∫
1p

a2 −x2
d x = sin−1 x

a
+C ,

which gives us a new and important integral.

Exercise 13

a Restrict the domain of y = cos x to the interval [0,π]. Draw a sketch to show that

this restricted function is one-to-one, and write down the domain and range of its

inverse y = cos−1 x.

b Explain graphically why cos−1(−x) =π−cos−1(x), and find cos−1(−1
2 ).

c Show that the derivative of cos−1 x is
−1p

1−x2
.

d Let f (x) = sin−1 x+cos−1 x, for x ∈ [−1,1]. Find the derivative of f , and conclude that

f is a constant function and find its value.

The hyperbolic functions

In the 17th century, the mathematician Johann Bernoulli (and others) studied the curve

produced by a hanging chain. It had been (incorrectly) thought by some that the curve

was a parabola, but Bernoulli showed that its equation is very different. The curve is often

referred to as a catenary (from the Latin word for chain) and, with appropriate choice of

origin and scale, has the equation

C (x) = ex +e−x

2
.

y

x
0

1

2

3

4

5

–1–2 1 2

y =
x + x

2

The catenary curve.
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If we define

S(x) = ex −e−x

2
,

then it is easy to see that S′(x) = C (x) and C ′(x) = S(x). Moreover, C (0) = 1 and S(0) = 0,

and so these functions bear some similarity to the trigonometric functions cos and sin

— although of course they are not periodic. (They do, however, have a complex period.)

Hence, by analogy, C (x) is written as cosh x (pronounced cosh of x) and S(x) is written as

sinh x (usually pronounced shine of x).

These function have other similarities to the trigonometric functions. For example, anal-

ogous to cos2 x + sin2 x = 1, we have

cosh2 x − sinh2 x = 1.

There are many other interesting analogues.

These functions are often called the hyperbolic functions (hence the ‘h’), because this

last identity enables us to parameterise half of the hyperbola

x2

a2 − y2

b2 = 1

by x = a cosh t , y = b sinh t .

The set of functions consisting of polynomials, rational functions, exponential and log-

arithmic functions, trigonometric functions and hyperbolic functions is often referred

to as the set of elementary functions, since they are the most commonly occurring and

well studied of all functions. Other functions which are not combinations of the above

are sometimes referred to as special functions. An example of a special function is

f (x) =
∫ x

0
e−t 2

d t .

History and applications

Some of the history of trigonometry was covered in earlier modules. The famous mathe-

matician Euler, and his contemporaries Jacob and Johann Bernoulli, applied the ideas of

calculus to the trigonometric functions producing remarkable results.

The mathematician Joseph Fourier, after whom Fourier series are named, applied the

ideas of trigonometric series to solve physical problems — in particular, he looked at the

distribution of heat in a metal bar.

One of the main modern applications of the trigonometric functions is to the analysis of

signals and waves. Many different types of waves arise in the study of alternating currents

and signals.
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Sine

Square

Triangle

Sawtooth

All of our modern telecommunications and electronic devices were only made possible

by an understanding of the physics of electricity and the modern development of elec-

trical engineering.

To give just a little insight into this, we are going to show how to build a ‘sawtooth’ wave

using trigonometric functions.

The basic identities

cos A cosB = 1

2

(
cos(A−B)+cos(A+B)

)
sin A sinB = 1

2

(
cos(A−B)−cos(A+B)

)
sin A cosB = 1

2

(
sin(A−B)+ sin(A+B)

)
can be established by expanding the right-hand sides. Using these identities, we can

easily prove that, if m,n are positive integers, then

∫ π

−π
sinmx sinnx d x =

0 if m 6= n,

π if m = n.

A similar formula holds for cosmx cosnx. We can also show that∫ π

−π
cosmx sinnx d x = 0,

for any integers m,n.
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We will attempt to construct the function y = x, for x ∈ [−π,π], using an infinite sum

of sine functions. We choose sine because the function y = x is odd, and so is the sine

function. Thus we write:

x = b1 sin x +b2 sin2x +b3 sin3x +·· ·

=
∞∑

n=1
bn sinnx.

Multiplying both sides by sin x and integrating from −π to π, we have∫ π

−π
x sin x d x = b1

∫ π

−π
sin x sin x d x +b2

∫ π

−π
sin x sin2x d x +·· ·

= b1π,

so

b1 = 1

π

∫ π

−π
x sin x d x.

Using the same idea, we can see that

bn = 1

π

∫ π

−π
x sinnx d x.

This integral can be found using a technique known as integration by parts, giving

bn =− 2

n
cosnπ.

The first few coefficients are

b1 = 2, b2 =−1, b3 = 2

3
, . . .

and so we have

x = 2
(
sin x − 1

2
sin2x + 1

3
sin3x − 1

4
sin4x + 1

5
sin5x − 1

6
sin6x +·· ·

)
,

at least for −π< x <π.

It needs to be mentioned here that there are serious issues to be examined in regard to

convergence, since we have an infinite series, but these issues are beyond the scope of

this module.

Graphically, we can chop the series off after a finite number of terms and plot. The fol-

lowing graph shows the sum of the first 10 terms.
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y

x
0
1

2

3

–1

–2

–3

3
44 2

2– –
4

–3
4–
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⎲
⎳

n = 1

y = f(x)

f(x) = 2
n

–    cos(n ) sin(nx)

Since the trigonometric functions are periodic, the series is converging to a periodic

function, which takes copies of the line y = x and repeats them every 2π. This is an

approximation of the sawtooth function shown at the start of this section. Note what

happens near and at the jump discontinuity!

Answers to exercises

Exercise 1

lim
x→0

tan x

x
= lim

x→0

(sin x

x
× 1

cos x

)
= 1×1 = 1.

Exercise 2

lim
x→0

sin3x + sin7x

5x
= lim

x→0

(3

5
× sin3x

3x

)
+ lim

x→0

(7

5
× sin7x

7x

)
= 3

5
+ 7

5
= 2.

Exercise 3

a Multiplying top and bottom by 1+cos x gives

lim
x→0

1−cos x

x2 = lim
x→0

sin2 x

x2(1+cos x)
=

(
lim
x→0

sin x

x

)2 ×
(

lim
x→0

1

1+cos x

)
= 1

2
.

b Hence, for small x, we have

1−cos x

x2 ≈ 1

2
,

and so cos x ≈ 1− 1
2 x2.
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Exercise 4

a We use two compound-angle formulas:

cos(A−B) = cos A cosB + sin A sinB

cos(A+B) = cos A cosB − sin A sinB.

Let C = A+B and D = A−B . Then A = 1
2 (C +D) and B = 1

2 (C −D). So it follows that

cosC −cosD =−2 sin A sinB =−2 sin
(C +D

2

)
sin

(C −D

2

)
.

b

d

d x
(cos x) = lim

h→0

cos(x +h)−cos x

h

= lim
h→0

−2 sin(x + h
2 ) sin h

2

h

=−
(

lim
h→0

sin
(
x + h

2

))× (
lim
h→0

sin h
2

h
2

)
=−sin x.

Exercise 5
d

d x
(tan x) = d

d x

( sin x

cos x

)
= cos2 x + sin2 x

cos2 x
= 1

cos2 x
= sec2 x.

Exercise 6

a
d

d x
(cosec x) = d

d x
(sin x)−1 =−1(sin x)−2 ×cos x =− cos x

sin2 x
=−cosec x cot x.

b
d

d x
(sec x) = d

d x
(cos x)−1 =−1(cos x)−2 ×−sin x = sin x

cos2 x
= tan x sec x.

c
d

d x
(cot x) = d

d x

(cos x

sin x

)
= −sin2 x −cos2 x

sin2 x
=−cosec2 x.

Exercise 7

d

d x
loge

(1+ sin x

cos x

)
= d

d x

(
loge (1+ sin x)− loge (cos x)

)
= cos x

1+ sin x
+ sin x

cos x
= cos2 x + sin2 x + sin x

(1+ sin x) cos x

= 1+ sin x

(1+ sin x) cos x
= 1

cos x
= sec x.
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Exercise 8

The derivative of the function is

d y

d x
= d

d x

( sin x

3+4cos x

)
= 3cos x +4

(3+4cos x)2 .

Since cos x ≥−1, it follows that
d y

d x
> 0 whenever 3+4cos x 6= 0. Hence, y is an increasing

function wherever it is defined.

Exercise 9

The perimeter of the triangle is P = 2a +2a cosθ = 2a(1+cosθ), so

a = P

2(1+cosθ)
.

The area of the triangle is

A = 1

2

(
2a cosθ

)(
a sinθ

)= a2 cosθ sinθ = 1

2
a2 sin2θ.

Substituting for a gives

A = P 2 sin2θ

8(1+cosθ)2 .

We want to find θ in the range 0 to π
2 such that

d A

dθ
= 0. By the quotient rule, if

d A

dθ
= 0,

then

16P 2 cos2θ (1+cosθ)2 +16P 2 sin2θ (1+cosθ) sinθ = 0.

It follows after some calculation that (1+cosθ)2(2cosθ−1) = 0. So cosθ =−1 or cosθ = 1
2 .

Hence, for 0 < θ < π
2 , the only solution is θ = π

3 . The triangle is equilateral.

Exercise 10

a
∫ π

3

π
6

(sin2x +cos3x)d x =
[
−1

2
cos2x + 1

3
sin3x

] π
3

π
6

= 1

6
.

b We have
d

d x
(x sin x) = sin x +x cos x. Hence

∫ π
2

0
x cos x d x =

[
x sin x

] π
2

0
−

∫ π
2

0
sin x d x = π

2
−1.

c
∫

tan2 x d x =
∫ (

sec2 x −1
)

d x = tan x −x +C .
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Exercise 11

We have sin2θ = 1
2 (1−cos2θ), and so∫

sin2θdθ = 1

2

(
θ− 1

2
sin2θ

)
+C .

Exercise 12

Since the period is π
p

2, we have
2π

n
= π

p
2, so n =p

2. The amplitude is C = 2. Hence,

from v2 = n2(C 2 −x2), when x = 0, v =±2
p

2. Thus the speed is 2
p

2 m/s.

Exercise 13

a y

x
0

1

–1

y = cos x

2

(0,1)

(π,–1)

This restricted function has domain [0,π] and range [−1,1]. So its inverse has domain

[−1,1] and range [0,π].

b
y

x
0

–1

–2

–3

1

2

3

(1,0)–1

y  = cos-1 (–x)

y  = –cos-1 (x)

(–1, 0)

(–1,–π)

(1,π)

Since cos π3 = 1
2 , we have cos−1( 1

2 ) = π
3 and so cos−1(−1

2 ) =π−cos−1( 1
2 ) =π− π

3 = 2π
3 .
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c Let y = cos−1 x. Then x = cos y , and so

d x

d y
=−sin y =−

√
1−cos2 y =−

√
1−x2.

(Note that 0 ≤ y ≤π and so 0 ≤ sin y ≤ 1.) Hence,

d y

d x
=− 1p

1−x2
.

d Let f (x) = sin−1 x +cos−1 x, for x ∈ [−1,1]. Then

f ′(x) = 1p
1−x2

− 1p
1−x2

= 0.

So f (x) =C , for some constant C . Now f (0) = π
2 and so sin−1 x +cos−1 x = π

2 .
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