

Programming Fundamentals
Dr. Raaid Alubady –6th Lecture

1. Introduction

A computer is a useful tool for solving a great variety of problems. To make a

computer do anything (i.e. solve a problem), you have to write a computer program. The

computer then executes the program, following each step mechanically, to accomplish the

end goal. As we discussed previously, the sequence of steps to be performed in order to

solve a problem by the computer is known as an algorithm. Programs usually implement

algorithms, and others, like an operating system, implement many algorithms. To go from

an algorithm to a program is to go from an idea to a concrete thing. Often you have to fill

in gaps that the algorithm does not specify but is intuitively understandable to humans.

Program analysis and design is the process that an organization uses to develop a

program. It is most, often an iterative process involving research, consultation, initial

design, testing and redesign. Thus we can say, the purpose of program analysis and design

are to solve the problem.

2. Program Analysis

In computer science, program analysis is the process of automatically analyzing

the behavior of computer programs regarding a property such as correctness, robustness,

safety, and liveness. Program analysis focuses on two major areas: program optimization

and program correctness. The first focuses on improving the program’s performance while

reducing the resource usage. The second focuses on ensuring that the program does what

it is supposed to do. Program analysis contributes to Software Intelligence by providing

information used in the mastering and understanding of software systems. Program

Problem-solving: Program Analysis and Design

(Pseudocode - Flowcharting)

6th Lecture

Programming Fundamentals
Dr. Raaid Alubady –6th Lecture

analysis can be performed without executing the program (static program analysis), during

runtime (dynamic program analysis) or in a combination of both.

2.1. Static program analysis

In the context of program correctness, static analysis can discover vulnerabilities during

the development phase of the program. These vulnerabilities are easier to correct than the

ones found during the testing phase since static analysis leads to the root of the

vulnerability. Due to many forms of static analysis being computationally undecidable, the

mechanisms for doing it will not always terminate with the right answer – either because

they sometimes return a false negative ("no problems found" when the code does, in fact,

have problems) or a false positive, or because they never return the wrong answer but

sometimes never terminate. Despite their limitations, the first type of mechanism might

reduce the number of vulnerabilities, while the second can sometimes give strong

assurance of the lack of a certain class of vulnerabilities.

2.2. Dynamic program analysis

Dynamic analysis can use runtime knowledge of the program to increase the precision of

the analysis, while also providing runtime protection, but it can only analyze a single

execution of the problem and might degrade the program’s performance due to the runtime

checks.

3. Program Design

Program Design is the phase of a computer program developed in which the

hardware and software resources needed by the program are identified and the logic to be

used by the program is determined. Program Design consists of the steps a programmer

should do before they start coding the program in a specific language. These steps when

properly documented will make the completed program easier for other programmers to

maintain in the future.

A characteristic of programs is that you and others will seek to modify your program in

the future. The program’s meaning is conveyed by statements, and is what the computer

interprets. Humans read this part, which in virtually all languages bears a strong

Programming Fundamentals
Dr. Raaid Alubady –6th Lecture

relationship to mathematical equations, and also read comments. Comments are not read

by the computer at all, but are there to help explain what might be expressed in a

complicated way by programming language syntax.

Activities involved in program design: There are three broad areas of activities that are

considered during program design:

 Understanding the program

 Using design tools to create a model

 Develop test data

4. Problem Solving

Computer science is all about solving problems with computers. The problems that

we want to solve can come from any real-world problem or perhaps even from the abstract

world. We need to have a standard systematic approach to solving problems. Since we will

be using computers to solve problems, it is important to first understand the computer’s

information processing model.

Consider a simple example of how the input/process/output works on a simple problem:

Example: Calculate the average grade for all students in a class.

i. Input: get all the grades … perhaps by typing them in via the keyboard.

ii. Process: add them all up and compute the average grade.

iii. Output: output the answer to the monitor.

Programming Fundamentals
Dr. Raaid Alubady –6th Lecture

Problem Solving is the sequential process of analyzing information related to a given

situation and generating appropriate response options.

There are six steps that you should follow in order to solve a problem:

1. Understand the Problem

2. Formulate a Model

3. Develop an Algorithm

4. Write the Program

5. Test the Program

6. Evaluate the Solution

Let us now examine the six steps to problems solving within the context of the above

example.

STEP 1: Understand the Problem:

The first step to solving any problem is to make sure that you understand the problem that

you are trying to solve.

In this example, we will understand that the input is a bunch of grades. But we need to

understand the format of the grades. Each grade might be a number from 0 to 100 or it may

be a letter grade from A+ to F. If it is a number, the grade might be a whole integer like 73

or it may be a real number like 73.42. We need to understand the format of the grades in

order to solve the problem. We also need to understand what the output should be. Again,

there is a formatting issue. Should we output a whole or real number or a letter grade?

Finally, we should understand the kind of processing that needs to be performed on the

data. This leads to the next step.

STEP 2: Formulate a Model:

Now we need to understand the processing part of the problem. Many problems break

down into smaller problems that require some kind of simple mathematical computations

in order to process the data. In our example, we are going to compute the average of the

incoming grades. So, we need to know the model (or formula) for computing the average

of a bunch of numbers. If there is no such “formula”, we need to develop one. Often,

however, the problem breaks down into simple computations that we well understand.

Programming Fundamentals
Dr. Raaid Alubady –6th Lecture

In order to come up with a model, we need to fully understand the information available to

us. Assuming that the input data is a bunch of integers or real numbers x1 + x2+ … + xn

representing a grade percentage, we can use the following computational model:

Average1 = (x1 + x2 + x3 + … + xn) /n

where the result will be a number from 0 to 100.

That is very straightforward (assuming that we knew the formula for computing the average

of a bunch of numbers). However, this approach will not work if the input data is a set of

letter grades like B-, C, A+, F, D-, etc.. because we cannot perform addition and division

on the letters. This problem solving step must figure out a way to produce an average from

such letters. Thinking is required. After some thought, we may decide to assign an integer

number to the incoming letters as follows:

After some thought, we may decide to assign an integer number to the incoming letters

as follows: If we assume that these newly assigned grade numbers are y1,y2,…,yn then

we can use the following computational model:

Average2 = (y1 + y2 + y3 + … + yn) /n

where the result will be a number from 0 to 12.

As for the output, if we want it as a percentage, then we can use either Average1directly or

use (Average2/12), depending on the input that we had originally. If we wanted a letter

grade as output, then we would have to use (Average1/100*12) or (Average1*0.12) or

Average2 and then map that to some kind of “lookup table” that allows us to look up a

grade letter according to a number from 0 to 12. Do you understand this step in the

problems solving process? It is all about figuring out how you will make use of the

available data to compute an answer.

STEP 3: Develop an Algorithm:

Now that we understand the problem and have formulated a model, it is time to come up

with a precise plan of what we want the computer to do. As we mentioned previously about

Programming Fundamentals
Dr. Raaid Alubady –6th Lecture

an algorithm, which is a precise sequence of instructions for solving a problem. Some of

the algorithms are not necessarily in sequence. To develop an algorithm, we need to

represent the instructions in some way that is understandable to a person who is trying to

figure out the steps involved. Usually, two commonly used representations for an algorithm

is by using either Flowcharts or Pseudocode.

A) Flowcharts

Flowcharting is a tool developed in the computer industry, for showing the steps involved

in a process. A flowchart is a diagram made up of boxes, diamonds and other shapes,

connected by arrows - each shape represents a step in the process, and the arrows show

the order in which they occur. Flowcharting combines symbols and flowlines, to show

figuratively the operation of an algorithm. If the flowchart is too messy to draw, try starting

again, but leaving out all of the decision points and concentrating on the simplest possible

course. Then the session can go back and add the decision points later. It may also be useful

to start by drawing a high-level flowchart for the whole organization, with each box being

a complete process that has to be filled out later.

Programming Fundamentals
Dr. Raaid Alubady –6th Lecture

General Rules for flowcharting

 All boxes of the flowchart are connected with Arrows. (Not lines)

 Flowchart symbols have an entry point on the top of the symbol with no other entry

points. The exit point for all flowchart symbols is on the bottom except for the

Decision symbol.

 The Decision symbol has two exit points; these can be on the sides or the bottom

and one side.

 Generally, a flowchart will flow from top to bottom. However, an upward flow can

be shown as long as it does not exceed 3 symbols.

 Connectors are used to connect breaks in the flowchart. Examples are:

 From one page to another page.

 From the bottom of the page to the top of the same page.

 An upward flow of more then 3 symbols.

 Subroutines and Interrupt programs have their own and independent flowcharts.

 All flow charts start with a Terminal or Predefined Process (for interrupt programs

or subroutines) symbol.

 All flowcharts end with a terminal or a contentious loop.

Consider the following example of solving the problem of a broken lamp. The example

of Flowchart for solving this problem:

Programming Fundamentals
Dr. Raaid Alubady –6th Lecture

B) Pseudocode

Pseudocode is a simple and concise sequence of English-like instructions to solve a

problem. Pseudocode is often used as a way of describing a computer program to someone

who doesn’t understand how to program a computer. When learning to program, it is

important to write Pseudocode because it helps you clearly understand the problem that

you are trying to solve. It also helps you avoid getting bogged down with syntax details

(i.e., like spelling mistakes) when you write your program.

Although flowcharts can be visually appealing, Pseudocode is often the preferred choice

for algorithm development because:

 It can be difficult to draw a flowchart neatly, especially when mistakes are made.

 Pseudocode fits more easily on a page of a paper.

 Pseudocode can be written in a way that is very close to real program code, making

it easier later to write the program.

 Pseudocode takes less time to write than drawing a flowchart.

Consider the following example of solving the problem of a broken lamp. The example of

Pseudocode for solving this problem:

1. IF lamp works, go to step 7.

2. Check if lamp is plugged in.

3. IF not plugged in, plug in lamp.

4. Check if bulb is burnt out.

5. IF blub is burnt, replace bulb.

6. IF lamp doesn’t work buy new lamp.

7. Quit ... problem is solved.

Pseudocode will vary according to whoever writes it. That is, one person’s Pseudocode is

often quite different from that of another person. However, there are some common control

structures (i.e., features) that appear whenever we write Pseudocode.

Programming Fundamentals
Dr. Raaid Alubady –6th Lecture

The point is that there are a variety of ways to write Pseudocode. The important thing to

remember is that your algorithm should be clearly explained with no ambiguity as to what

order your steps are performed in. Consider our previous example of finding the average

of a set of n grades. What would the Pseudocode look like? Here is an example of what it

might look like if we had the example of n numeric grades x1, x2,....,xn that were input from

the keyboard:

Programming Fundamentals
Dr. Raaid Alubady –6th Lecture

Algorithm: DisplayGrades

1. set the sum of the grade values to 0.

2. load all grades x1, x2, …, xn from keyboard.

3. repeat n times

4. get grade xl

5. add xi to the sum

6. end_repeat

7. compute the average to be sum/n.

8. print the average.

STEP 4: Write the Program:

We now have to transform the algorithm from step 3 into a set of instructions that can be

understood by the computer. Writing a program is often called "writing code" or

“implementing an algorithm”. So the code (or source code) is actually the program itself.

Below is a program (written in processing) that implements our algorithm for finding the

average of a set of grades. Notice that the code looks quite similar in structure, however,

the processing code is less readable and seems somewhat more mathematical:

For now, we will not discuss the details of how to produce the above source code. In fact,

the source code would vary depending on the programming language that was used.

Learning a programming language may seem difficult at first, but it will become easier

with practice.

STEP 5: Test the Program:

Once you have a program written that compiles, you need to make sure that it solves the

problem that it was intended to solve and that the solutions are correct. Running a program

is the process of telling the computer to evaluate the compiled instructions.

Programming Fundamentals
Dr. Raaid Alubady –6th Lecture

When you run your program, if all is well, you should see the correct output. It is possible,

however, that your program works correctly for some set of data input but not for all. If the

output of your program is incorrect, it is possible that you did not convert your algorithm

properly into a proper program. It is also possible that you did not produce a proper

algorithm back in step 3 that handles all situations that could arise. Maybe you performed

some instructions out of sequence. Whatever happened, such problems with your program

are known as bugs. Bugs are problems/errors with a program that causes it to stop working

or produce incorrect or undesirable results.

You should fix as many bugs in your program as you can find. To find bugs effectively,

you should test your program with many test cases (called a test suite). It is also a good

idea to have others test your program because they may think up situations or input data

that you may never have thought of. The process of finding and fixing errors in your code

is called debugging and it is often a very time-consuming “chore” when it comes to being

a programmer. If you take your time to carefully follow problem solving steps 1 through

3, this should greatly reduce the amount of bugs in your programs and it should make

debugging much easier.

STEP 6: Evaluate the Solution:

Once your program produces a result that seems correct, you need to re-consider the

original problem and make sure that the answer is formatted into a proper solution to the

problem. It is often the case that you realize that your program solution does not solve the

problem the way that you wanted it to. You may realize that more steps are involved.

Effective programs don’t happen by accident — they are the result of keen observation and

forethought.

<Best Regards>

Dr. Raaid Alubady

