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Data can be corrupted 

during transmission.

Some applications require that 

errors be detected and corrected.

Note



10.3

10-1   INTRODUCTION

Let us first discuss some issues related, directly or

indirectly, to error detection and correction.

Types of Errors

Redundancy

Detection Versus Correction

Forward Error Correction Versus Retransmission

Coding

Modular Arithmetic

Topics discussed in this section:
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In a single-bit error, only 1 bit in the data 

unit has changed.

Note
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Figure 10.1  Single-bit error
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A burst error means that 2 or more bits 

in the data unit have changed.

Note
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Figure 10.2  Burst error of length 8
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Redundancy : is the central concept in detecting & 

correcting errors.
We need to send some extra bits with our data. These 
redundant bits are added by the sender and removed by 
the receiver .

10.8

To detect or correct errors, we need to 

send extra (redundant) bits with data.

Note
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Figure 10.3  The structure of encoder and decoder



Detection Versus Correction

 In error detection , we are looking only to 

see if any error has occurred. A single-bit 

error is the same for us as a burst error.

 In error correction , we need to know the 

exact number of bits that are corrupted and 

more importantly, their location in the 

message. So the number of errors and the 

size of the message are important factors. 

 Note: correction of errors is more difficult than 

the detection

10.10



Forward Error Correction Versus 
Retransmission

Tow main methods of error correction

I. Forward error correction FEC: is the process in 
which the receiver tries to guess the message 
by using redundant bits.

II. Retransmission : is a technique in which the 
receiver detects the occurrence of an error and 
asks the sender to resend the message.

Note: use FEC if the number of errors is small.  

10.11
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Coding
Redundancy is achieved through various coding 
schemes.  The sender adds redundant bits through a 
process that creates a relationship between the 
redundant bits and the actual data bits. 

The receiver checks the relationships between the 
two sets of bits to detect or correct the errors.

The ratio of redundant bits to the data bits and the 
robustness of the process are important factors in 
any coding scheme

10.12



coding schemes is divided into two 
categories :

1- block coding .

2- convolution coding. convolution coding is
more complex than block coding. 

10.13

 In this section , we concentrate on block 
codes; we leave convolution codes 

to advanced texts.

Note



Modular Arithmetic

 In modular arithmetic, we use only a limited range of 
integers. We define an upper limit, called a modulus N. 
We then use only the integers 0 to N - 1.

 For example, if the modulus is 12, we use only the 
integers 0 to 11.

 In a modulo-N system, if a number is greater than N, it 
is divided by N and the remainder is the result.

Addition and subtraction in modulo arithmetic are simple. There is no 
carry when you add two digits in a column. There is no carry when 
you subtract one digit from another in a column

10.14
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Modulo-2 Arithmetic

Of particular interest is modulo-2 arithmetic. In this
arithmetic, the modulus N is 2. We can use only 0
and 1. Operations in this arithmetic are very simple.
The following shows how we can add or subtract 2
bits.

Adding:       0+0=0    0+1=1   1+0=1  1+1=0

Subtracting: 0 -0=0    0 -1=1    1-0=1  1 -1=0

use the XOR (exclusive OR) operation for both 
addition and subtraction.

10.15

In modulo-N arithmetic, we use only the 

integers in the range 0 to N −1, inclusive.

Note
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Note : If the modulus is not 2, addition and 
subtraction are distinct.

10.16

Figure 10.4  XORing of two single bits or two words
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10-2   BLOCK CODING

In block coding, we divide our message into blocks, each 

of k bits, called datawords.

We add r redundant bits to each block to make the length 

n = k + r. The resulting n-bit blocks are called codewords.

With k bits, we can create a combination of 2k datawords; 

with n bits, we can create a combination of 2n codewords.

The block coding process is one-to-one; the same 

dataword is always encoded as the same codeword. This 

means that we have 2n - 2k codewords that are not used.
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Topics discussed in this section:

 Error Detection

 Error Correction

 Hamming Distance

 Minimum Hamming Distance



10.19

Figure 10.5  Datawords and codewords in block coding
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The 4B/5B block coding is a good example of this type of

coding.

In this coding scheme, k = 4 and n = 5. As we saw, we 

have 2k = 16 datawords and 2n = 32 codewords.

We saw that 16 out of 32 codewords are used for message 

transfer and the rest are either used for other purposes or

unused.

Example 10.1
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Figure 10.6  Process of error detection in block coding



Error Detection

How can errors be detected by using block coding? 
If the following two conditions are met, the 
receiver can detect a change in the original 
codeword.

 1. The receiver has (or can find) a list of valid 
codewords.

 2. The original codeword has changed to an invalid one.

10.22
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Let us assume that k = 2 and n = 3. Table 10.1 shows the

list of datawords and codewords. Later, we will see

how to derive a codeword from a dataword.

Assume the sender encodes the dataword 01 as 011 and

sends it to the receiver. Consider the following cases:

1. The receiver receives 011. It is a valid codeword. The

receiver extracts the dataword 01 from it.

Example 10.2
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2. The codeword is corrupted during transmission, and

111 is received. This is not a valid codeword and is

discarded (don’t exist in table).

3. The codeword is corrupted during transmission, and

000 is received. This is a valid codeword.

The receiver incorrectly extracts the dataword 00. Two 

corrupted bits have made the error undetectable.

Example 10.2 (continued)
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Table 10.1  A code for error detection (Example 10.2)
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An error-detecting code can detect 

only the types of errors for which it is; 

designed,other types of errors may 

remain undetected.

Note
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Figure 10.7  Structure of encoder and decoder in error correction



Error Correction

As we said before, error correction is much 
more difficult than error detection. In error

detection, the receiver needs to know only that 
the received codeword is invalid; in error 
correction the receiver needs to find (or –
guess) the original codeword sent.

Figure 10.7 shows the role of block coding in
error correction. We can see that the idea is
the same as error detection but the checker
functions are much more complex.

10.28



10.29

Let us add more redundant bits to Example 10.2 to see if the

receiver can correct an error without knowing what was actually

sent. We add 3 redundant bits to the 2-bit dataword to make 5-bit

codewords. Table 10.2 shows the datawords and codewords.

Assume the dataword is 01. The sender creates the codeword

01011.

The codeword is corrupted during transmission, and 01001 is

received. First, the receiver finds that the received codeword is not

in the table. This means an error has occurred. The receiver,

assuming that there is only 1 bit corrupted, uses the following

strategy to guess the correct dataword.

Example 10.3
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1. Comparing the received codeword with the first

codeword in the table (01001 versus 00000), the

receiver decides that the first codeword is not the one

that was sent because there are two different bits.

2. By the same reasoning, the original codeword cannot

be the third or fourth one in the table.

3. The original codeword must be the second one in the

table because this is the only one that differs from the

received codeword by 1 bit. The receiver replaces

01001 with 01011 and consults the table to find the

dataword 01.

Example 10.3 (continued)
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Table 10.2  A code for error correction (Example 10.3)
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The Hamming distance between two 

words is the number of differences 

between corresponding bits.

Note

Hamming Distance
One of the central concepts in coding for error 

control is the idea of the Hamming distance.

The Hamming distance can easily be found if we apply the 

XOR operation (Θ) on the two words and count the number 

of 1’s in the result. Note that the Hamming distance is

a value greater than zero.
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Let us find the Hamming distance between two pairs of

words.

1. The Hamming distance d(000, 011) is 2 because

Example 10.4

2. The Hamming distance d(10101, 11110) is 3 because
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The minimum Hamming distance is the 

smallest Hamming distance between

all possible pairs in a set of words.

Note

Minimum Hamming Distance

the measurement that is used for designing a code is the

minimum Hamming distance.

We use dmin to define the minimum Hamming distance in a 

coding scheme. 

To find this value, we find the Hamming

distances between all words and select the smallest one.
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Find the minimum Hamming distance of the coding

scheme in Table 10.1.

Solution

We first find all Hamming distances.

Example 10.5

The dmin in this case is 2.
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Find the minimum Hamming distance of the coding

scheme in Table 10.2.

Solution

We first find all the Hamming distances.

The dmin in this case is 3.

Example 10.6



 Three Parameters

Before we continue with our discussion, we need to 
mention that any coding scheme needs to have at least 
three parameters: the codeword size n, the dataword 
size k, and the minimum Hamming distance dmin.

A coding scheme C is written as C(n, k) with a separate 
expression for dmin.

For example, we can call our first coding scheme C(3, 2)

with dmin =2 and our second coding scheme C(5, 2) with 

dmin = 3.

10.37



Hamming Distance and Error

let us discuss the relationship between the Hamming distance 
and errors occurring during transmission. 

When a codeword is corrupted during transmission, the Hamming 
distance between the sent and received codewords is the 
number of bits affected by the error. 

In other words, the Hamming distance between the received 
codeword and the sent codeword is the number of bits that 
are corrupted during transmission.

For example, if the codeword 00000 is sent and 01101 is 
received, 3 bits are in error and the Hamming distance 

between the two is d(00000, 01101) =3.

10.38
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To guarantee the detection of up to s 

errors in all cases, the minimum

Hamming distance in a blockcode 

must be dmin = s + 1.

Note
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The minimum Hamming distance for our first code

scheme (Table 10.1) is 2. This code guarantees detection

of only a single error.

For example, if the third codeword (101) is sent and one

error occurs, the received codeword does not match any

valid codeword. If two errors occur, however, the

received codeword may match a valid codeword and

the errors are not detected.

Example 10.7
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Our second block code scheme (Table 10.2) has dmin = 3.

This code can detect up to two errors. Again, we see that

when any of the valid codewords is sent, two errors create

a codeword which is not in the table of valid codewords.

The receiver cannot be fooled.

However, some combinations of three errors change a

valid codeword to another valid codeword. The receiver

accepts the received codeword and the errors are

undetected.

Example 10.8
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10-3   LINEAR BLOCK CODES

Almost all block codes used today belong to a subset

called linear block codes. A linear block code is a code

in which the exclusive OR (addition modulo-2) of two

valid codewords creates another valid codeword.

Minimum Distance for Linear Block Codes

Some Linear Block Codes

Topics discussed in this section:
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In a linear block code, the exclusive OR 

(XOR) of any two valid code words 

creates another valid codeword.

Note
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Let us see if the two codes we defined in Table 10.1 and

Table 10.2 belong to the class of linear block codes.

1. The scheme in Table 10.1 is a linear block code

because the result of XORing any codeword with any

other codeword is a valid codeword. For example,

the XORing of the second and third codewords

creates the fourth one.

2. The scheme in Table 10.2 is also a linear block code.

We can create all four codewords by XORing two

other codewords.

Example 10.10
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Minimum Distance for Linear Block Codes

It is simple to find the minimum Hamming distance for a linear

block code. The minimum Hamming distance is the number of 

1s in the nonzero valid codeword with the smallest number of

1s.

Example 10.11

In our first code (Table 10.1), the numbers of 1s in the

nonzero codewords are 2, 2, and 2. So the minimum

Hamming distance is dmin = 2. In our second code (Table

10.2), the numbers of 1s in the nonzero codewords are 3,

3, and 4. So in this code we have dmin = 3.



Types of linear Block Codes

1-Simple Parity-Check Code: the most familiar error-

detecting code is the simple parity-check code. In this

code, a k-bit dataword is changed to an n-bit codeword 
where n = k + 1. The extra bit, called the parity bit, is 
selected to make the total number of 1s in the codeword 
even.

10.46

A simple parity-check code is a 

single-bit error-detecting 

code in which 

n = k + 1 with dmin = 2.
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Table 10.3  Simple parity-check code C(5, 4)
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Figure 10.10  Encoder and decoder for simple parity-check code
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Let us look at some transmission scenarios. Assume the

sender sends the dataword 1011. The codeword created

from this dataword is 10111, which is sent to the receiver.

We examine five cases:

1. No error occurs; the received codeword is 10111. The

syndrome is 0. The dataword 1011 is created.

2. One single-bit error changes a1 . The received

codeword is 10011. The syndrome is 1. No dataword

is created.

3. One single-bit error changes r0 . The received codeword

is 10110. The syndrome is 1. No dataword is created. 

Example 10.12
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4. An error changes r0 and a second error changes a3 .

The received codeword is 00110. The syndrome is 0.

The dataword 0011 is created at the receiver. Note that 

here the dataword is  wrongly created due to the

syndrome value. 

5. Three bits— a3, a2, and a1—are changed by errors.

The received codeword is (01011). The syndrome is 1.

The dataword is not created. 

Note :This shows that the simple parity check, guaranteed 

to detect one single error ,can also find any odd number of 

errors.

Example 10.12  (continued)
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A simple parity-check code can detect 

an odd number of errors.

Note
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Figure 10.11  Two-dimensional parity-check code
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Figure 10.11  Two-dimensional parity-check code
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Figure 10.11  Two-dimensional parity-check code
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2- Hamming Codes: are error-correcting codes. 

These codes were originally designed with dmin = 3, 
which means that they can detect up to two errors or 
correct one single error.

Note: some Hamming codes that can correct more than one 

error, our discussion focuses on the single-bit error-correcting 
code.

 First let us find the relationship between n and k in a 
Hamming code. We need to

 choose an integer m >= 3. The values of n and k are 
then calculated from m as n =2m- 1

 and k =n - m. The number of check bits r =m.
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All Hamming codes discussed in this 

book have dmin = 3.

The relationship between m and n in 

these codes is n=2m-1.

Note
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Table 10.4  Hamming code C(7, 4)
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Figure 10.12  The structure of the encoder and decoder for a Hamming code
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Table 10.5  Logical decision made by the correction logic analyzer
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Let us trace the path of three datawords from the sender to 

the destination:

1. The dataword 0100 becomes the codeword 0100011.

The codeword 0100011 is received. The syndrome is

000, the final dataword is 0100.

2. The dataword 0111 becomes the codeword 0111001.

The syndrome is 011. After  flipping b2 (changing the 

1 to 0), the final dataword is 0111.

3. The dataword 1101 becomes the codeword 1101000.

The syndrome is 101. After flipping b0, we get 0000,

the wrong dataword. This shows that our code cannot

correct two errors.

Example 10.13



10.61

We need a dataword of at least 7 bits. Calculate values of

k and n that satisfy this requirement.

Solution

We need to make k = n − m greater than or equal to 7.

1. If we set m = 3, the result is n=23-1=7 and k = 7 − 3,

or 4, which is not acceptable.

2. If we set m = 4, then n = 24− 1 = 15 and k = 15 − 4 = 11, 

which satisfies the condition. So the code is

Example 10.14

C(15, 11) 
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10-4   CYCLIC CODES

Cyclic codes are special linear block codes with one

extra property. In a cyclic code, if a codeword is

cyclically shifted (rotated), the result is another

codeword.

Cyclic Redundancy Check

Hardware Implementation

Polynomials

Cyclic Code Analysis

Advantages of Cyclic Codes

Other Cyclic Codes

Topics discussed in this section:



Cyclic Redundancy Check

We can create cyclic codes to correct errors. In 

this section, we simply discuss a category of 

cyclic codes called the cyclic redundancy check 

(CRC) that is used in networks such as LANs and 

WANs.

10.63
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Table 10.6  A CRC code with C(7, 4)
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Figure 10.14  CRC encoder and decoder
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Figure 10.15  Division in CRC encoder



Polynomials

A better way to understand cyclic codes and how 
they can be analyzed is to represent

them as polynomials.

A pattern of 0s and 1s can be represented as a 
polynomial with coefficients of 0 and1. The 
power of each term shows the position of the 
bit; the coefficient shows the value of the bit.

Figure 10.21 shows a binary pattern and its 
polynomial representation.

10.67
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Figure 10.21   A polynomial to represent a binary word



10.69

10-5   CHECKSUM

The last error detection method we discuss here is

called the checksum. The checksum is used in the

Internet by several protocols although not at the data

link layer. However, we briefly discuss it here to

complete our discussion on error checking

Idea

One’s Complement

Internet Checksum

Topics discussed in this section:
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Suppose our data is a list of five 4-bit numbers that we

want to send to a destination. In addition to sending these

numbers, we send the sum of the numbers. For example,

if the set of numbers is (7, 11, 12, 0, 6), we send (7, 11, 12,

0, 6, 36), where 36 is the sum of the original numbers.

The receiver adds the five numbers and compares the

result with the sum. If the two are the same, the receiver

assumes no error, accepts the five numbers, and discards

the sum. Otherwise, there is an error somewhere and the

data are not accepted.

Example 10.18
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We can make the job of the receiver easier if we send the

negative (complement) of the sum, called the checksum.

In this case, we send (7, 11, 12, 0, 6, −36). The receiver

can add all the numbers received (including the

checksum). If the result is 0, it assumes no error;

otherwise, there is an error.

Example 10.19
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How can we represent the number 21 in one’s

complement arithmetic using only four bits?

Solution

The number 21 in binary is 10101 (it needs five bits). We

can wrap the leftmost bit and add(not Xor) it to the four

rightmost bits. We have (0101 + 1) = 0110 or 6.

Example 10.20
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How can we represent the number −6 in one’s

complement arithmetic using only four bits?

Solution

In one’s complement arithmetic, the negative or

complement of a number is found by inverting all bits.

Positive 6 is 0110; negative 6 is 1001. If we consider only

unsigned numbers, this is 9. In other words, the

complement of 6 is 9. Another way to find the

complement of a number in one’s complement arithmetic

is to subtract the number from 2n − 1 (16 − 1 in this case).

Why 16?

Example 10.21
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Let us redo Exercise 10.19 using one’s complement

arithmetic. Figure 10.24 shows the process at the sender

and at the receiver. The sender initializes the checksum

to 0 and adds all data items and the checksum (the

checksum is considered as one data item and is shown in

color). The result is 36. However, 36 cannot be expressed

in 4 bits. The extra two bits are wrapped and added with

the sum to create the wrapped sum value 6. In the figure,

we have shown the details in binary. The sum is then

complemented, resulting in the checksum value 9 (15 − 6

= 9). The sender now sends six data items to the receiver

including the checksum 9.

Example 10.22
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The receiver follows the same procedure as the sender. It

adds all data items (including the checksum); the result

is 45. The sum is wrapped and becomes 15. The wrapped

sum is complemented and becomes 0. Since the value of

the checksum is 0, this means that the data is not

corrupted. The receiver drops the checksum and keeps

the other data items. If the checksum is not zero, the

entire packet is dropped.

Example 10.22 (continued)
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Figure 10.24  Example 10.22
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Sender site:
1. The message is divided into 16-bit words.

2. The value of the checksum word is set to 0.

3. All words including the checksum are

added using one’s complement addition.

4. The sum is complemented and becomes the

checksum.

5. The checksum is sent with the data.

Note
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Receiver site:
1. The message (including checksum) is

divided into 16-bit words.

2. All words are added using one’s

complement addition.

3. The sum is complemented and becomes the

new checksum.

4. If the value of checksum is 0, the message

is accepted; otherwise, it is rejected.

Note
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Let us calculate the checksum for a text of 8 characters

(“Forouzan”). The text needs to be divided into 2-byte

(16-bit) words. We use ASCII (see Appendix A) to change

each byte to a 2-digit hexadecimal number. For example,

F is represented as 0x46 and o is represented as 0x6F.

Figure 10.25 shows how the checksum is calculated at the

sender and receiver sites. In part a of the figure, the value

of partial sum for the first column is 0x36. We keep the

rightmost digit (6) and insert the leftmost digit (3) as the

carry in the second column. The process is repeated for

each column. Note that if there is any corruption, the

checksum recalculated by the receiver is not all 0s. We

leave this an exercise.

Example 10.23
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Figure 10.25  Example 10.23


