Lecture Notes on Operating Systems

Lecture 1: Introduction to Operating Systems

* An operating system is a program that acts as an
intermediary between a user of a computer and the
computer hardware.

 The purpose of an operating system is to provide an
environment in which a user can execute programs.
The primary goal of an operating system is thus to
make the computer system convenient to use.

A secondary goal is to use the computer hardware in
an efficient manner.

Lecture 1: Introduction to Operating Systems

* In brief, an operating system is the set of programs
that controls a computer. Some examples of
operating systems are UNIX, Mach, MS-DOS, MS-
Windows, Windows/NT, OS/2 and MacOS.

* An operating system is an important part of almost
every computer system.

A computer system can be divided roughly into four
components: the hardware, the operating system,
the application programs and the users (Figure 1.1).

Figure 1.1 Abstract view of the components of a computer system.

Objectives of Operating Systems

* To hide details of hardware by creating abstraction.

* To allocate resources to processes (Manage
resources).

* Provide a pleasant and effective user interface.

History of Operating Systems

e The 1940's - First Generations

The earliest electronic digital computers had no operating systems.
Machines of the time were so primitive that programs were often entered
one bit at time on rows of mechanical switches (plug boards).

Programming languages were unknown (not even assembly languages).
Operating systems were unheard of.

* The 1950's - Second Generation

By the early 1950's, the routine had improved somewhat with the
introduction of punch cards. The General Motors Research Laboratories
implemented the first operating systems in early 1950's for their IBM 701.
The system of the 50's generally ran one job at a time.

History of Operating Systems
* The 1960's - Third Generation

The systems of the 1960's were also batch processing systems, but they
were able to take better advantage of the computer's resources by running
several jobs at once.

* Fourth Generation

With the development of LS| (Large Scale Integration) circuits, chips,
operating system entered in the personal computer and the workstation
age. Microprocessor technology evolved to the point that it becomes

possible to build desktop computers as powerful as the mainframes of the
1970s.

Lecture 2: Operating Systems Structure

* System Components

* Operating Systems Services

e System Calls and System Programs

System Components

* Process Management

A process is only ONE instant of a program in execution.
There are many processes can be running the same program.

The five major activities of an operating system in regard to process
management are:

* Creation and deletion of user and system processes.
e Suspension and resumption of processes.

* A mechanism for process synchronization.

A mechanism for process communication.

A mechanism for deadlock handling.

System Components

* Main-Memory Management

Main-Memory is a large array of words or bytes. Each word or byte
has its own address. Main memory is a repository of quickly accessible
data shared by the CPU and |I/O devices.

The major activities of an operating system in regard to memory-management
are:

* Keep track of which part of memory are currently being used and by whom.

 Decide which processes are loaded into memory when memory space
becomes available.

* Allocate and deallocate memory space as needed.

System Components

File Management

A file is a collected of related information defined by its
creator. Computer can store files on the disk (secondary

storage), which provide long term storage.

The creation and deletion of files.

The creation and deletion of directions.

The support of primitives for manipulating files and directions.
The mapping of files onto secondary storage.

The backup of files on stable storage media.

System Components

* |/0O System Management

One of the purposes of an operating system is to hide the
peculiarities of specific hardware devices from the user.

 Secondary-Storage Management

Generally speaking, systems have several levels of
storage, including primary storage, secondary storage and
cache storage. Instructions and data must be placed in primary
storage or cache to be referenced by a running program.

System Components

Networking

A distributed system is a collection of processors that do not share
memory, peripheral devices, or a clock. The processors communicate with
one another through communication lines called network.

Protection System

Protection refers to mechanism for controlling the access of
programs, processes, or users to the resources defined by a computer
system.

Command Interpreter System

A command interpreter is an interface of the operating system with
the user. The user gives commands with are executed by operating system
(usually by turning them into system calls).

Operating Systems Services

Program Execution

The system must be able to load a program into memory and to run
it. The program must be able to end its execution, either normally or
abnormally (indicating error).

1/O Operations

A running program may require 1/O. This I/O may involve a file or an
|/O device.

File System Manipulation

The output of a program may need to be written into new files or
input taken from some files. The operating system provides this service.

Error Detection

An error is one part of the system may cause malfunctioning of the
complete system. To avoid such a situation the operating system constantly
monitors the system for detecting the errors.

System Calls and System Programs

» System calls provide the interface between a process and the
operating system. These calls are generally available as
assembly-language instructions, and are usually listed in the
manuals used by assembly-language programmers.

Lecture 3: Process Management

* The operating system is responsible for the following activities in
connection with process management: the creation and deletion of both
user and system processes; the scheduling of processes; and the provision
of mechanisms for synchronization, communication, and deadlock
handling for processes.

Process, on the other hand, includes:

* Current value of Program Counter (PC)
* Contents of the processors registers

* Value of the variables

 The processes stack (SP) which typically contains temporary data such as
subroutine parameter, return address, and temporary variables.

A data section that contains global variables.

Process State

As a process executes, it changes state. The state of a

process is defined in part by the current activity of that
process. Each process may be in one of the following states:

New State: The process being created.

Running State: A process is said to be running if it has the CPU, that is,
process actually using the CPU at that particular instant.

Blocked (or waiting) State: A process is said to be blocked if it is waiting for
some event to happen such that as an I/O completion before it can
proceed. Note that a process is unable to run until some external event
happens.

Ready State: A process is said to be ready if it is waiting to be assigned to a
processor.

Terminated state: The process has finished execution.

admitted interrupt exit

scheduler dispatch

/O or event completion IO or event watt

Figure : Diagram of process states.

 Process Control Block

 Each process is represented in the operating system by a
process control block PCS)—also called a task control block.

Process state

process number

program counter

Registers

memory limits

list of open files

Figure : Process control block.

Lecture 4: CPU Scheduling

* CPU scheduling is the basis of multiprogrammed operating
systems. By switching the CPU among processes, the operating
system can make the computer more productive.

* Basic Concepts

The idea of multiprogramming is relatively simple. A
process is executed until it must wait, typically for the
completion of some I/0 request. In a simple computer system,
the CPU would then just sit idle.

Scheduling is a fundamental operating-system function.
Almost all computer resources are scheduled before use.

 CPU -1/0 Burst Cycle

The success of CPU scheduling depends on the following

observed property of processes: Process execution consists of
a cycle of CPU execution and 1/O wait. Processes alternate
back and forth between these two states.

e Context Switch

To give each process on a multiprogrammed machine a
fair share of the CPU, a hardware clock generates interrupts
periodically.

This allows the operating system to schedule all processes
in main memory (using scheduling algorithm) to run on the
CPU at equal intervals. Each switch of the CPU from one
process to another is called a context switch.

1

2

3

4

Preemptive Scheduling

CPU scheduling decisions may take place under the
following four circumstances:

. When a process switches from the running state to the waiting state (for.
example, I/O request, or invocation of wait for the termination of one of
the child processes).

. When a process switches from the running state to the ready state (for
example, when an interrupt occurs).

. When a process switches from the waiting state to the ready state (for
example, completion of 1/0).

. When a process terminates.

Dispatcher

Switching context.
Switching to user mode.
Jumping to the proper location in the user program to restart that program

Scheduling Criteria

Different CPU scheduling algorithms have different properties and may
favor one class of processes over another. In choosing which algorithm to
use in a particular situation, we must consider the properties of the
various algorithms.

Many criteria have been suggested for comparing CPU
scheduling algorithmes.

Criteria that are used include the following:

CPU utilization.
Throughput.
Turnaround time.
Waiting time.
Response time.

Lecture 5: Scheduling Algorithms

First-Come, First-Served Scheduling
Shortest-Job-First Scheduling
Priority Scheduling

Round-Robin Scheduling

Multilevel Queue Scheduling

Multilevel Feedback Queue Scheduling

First-Come, First-Served Scheduling

Process | Burst Time
Pl 24
P2
P3 3
P1 P2 | P3

Shortest-Job-First Scheduling
Process | Burst Time
P1 6
P2 8
P3 7
P4 3
P4l pP1 | P3 P2

3 9 16 24

Priority Scheduling

Process | Burst Time Priority
Pl 10 3
P2 1 1
P3 2 3
P4 1 4
PS5 S 2

P2 P5

P1

P3

P4

Round-Robin Scheduling

Process Burst Time
P1 24
P2 3
P3 3
O I B R)
D 4B 1 %

E

Multilevel Queue Scheduling

Ighest priority

batch processes

— student processes

lowest priority

In @ multilevel queue scheduling processes are permanently
assigned to one queues.

The processes are permanently assigned to one another,
based on some property of the process, such as

Memory size

Process priority

Process type

Algorithm chooses the process from the occupied queue that
has the highest priority, and run that process either

Preemptive or

Non-preemptively

6. Process Synchronization

* A cooperating process is one that can affect or be
affected by the other processes executing in the
system.

* Cooperating processes may either directly share a
logical address space(that is, both code and data), or
be allowed to share data only through files. The
former case is achieved through the use of
lightweight processes or threads. Concurrent access
to shared data may result in data inconsistency.

* In this lecture, we discuss various mechanisms to
ensure the orderly execution of cooperating
processes that share a logical address space, so that
data consistency is maintained.

Cooperating Processes

* The concurrent processes executing in the operating
system may be either independent processes or
cooperating processes.

A process is independent if it cannot affect or be
affected by the other processes executing in the
system.

* On the other hand, a process is cooperating if it can
affect or be affected by the other processes executing
in the system.

 There are several reasons for providing an environment that
allows process cooperation:

Information sharing

Computation speedup

Modularity

Convenience

Race condition

* When several processes access and
manipulate the same data concurrently and
the outcome of the execution depends on the
particular order in which the access takes
place, is called a race condition.

The Critical-Section Problem

The important feature of the system is that, when one process
is executing in its critical section, no other process is to be
allowed to execute in its critical section.

Thus, the execution of critical sections by the processes is
mutually exclusive in time.

The critical-section problem is to design a protocol that the
processes can use to cooperate.

Each process must request permission to enter its critical
section.

* A solution to the critical-section problem must satisfy
the following three requirements:

1. Mutual Exclusion: If process Pi is executing in its critical
section, then no other processes can be executing in their
critical sections.

2. Progress: If no process is executing in its critical section and
there exist some processes that wish to enter their critical
sections, then only those processes that are not executing in
their remainder section can participate in the decision of
which will enter its critical section next, and this selection
cannot be postponed indefinitely.

3. Bounded Waiting: There exist a bound on the number of times
that other processes are allowed to enter their critical sections
after a process has made a request to enter its critical section
and before that request is granted.

DEADLOCKS

A process requests resources; if the resources are not
available at that time, the process enters a wait state. It may
happen that waiting processes will never again change state,

because the resources they have requested are held by other
waiting processes. This situation is called a deadlock.

In this lecture, we describe methods that an operating system
can use to deal with the deadlock problem.

Resources

* A process must request a resource before using it, and must
release the resource after using it.

* A process may request as many resources as it requires to
carry out its designated task.

* Qaprocess may utilize a resource in only the following
seguence:

Request

\ Release

Deadlock Characterization

* In a deadlock, processes never finish executing and
system resources are tied up, preventing other jobs
from ever starting.

 Before we discuss the various methods for dealing
with the deadlock problem, we shall describe
features that characterize deadlocks.

Necessary Conditions

A deadlock situation can arise if the following four
conditions hold simultaneously in a system:

Mutual exclusion

Hold and wait

No preemption

Circular wait

Methods for Handling Deadlocks

Principally, there are three different methods for
dealing with the deadlock problem:

We can use a protocol to ensure that the system will never
enter a deadlock state.

We can allow the system to enter a deadlock state and then
recover.

lgnore the problem and pretend that deadlocks never occur in
the system; used by most operating systems, including UNIX.

Deadlock Prevention

By ensuring that at least one of these conditions cannot hold,
we can prevent the occurrence of a deadlock

Mutual Exclusion — not required for sharable resources; must hold for
nonsharable resources.

Hold and Wait — must guarantee that whenever a process requests a
resource, it does not hold any other resources.

No Preemption — o If a process that is holding some resources requests
another resource that cannot be immediately allocated to it, then all
resources currently being held are released.

Circular Wait — impose a total ordering of all resource types, and require
that each process requests resources in an increasing order of
enumeration.

Deadlock Avoidance
Requires that the system has some additional a priori

information available.

Simplest and most useful model requires that each process declare
the maximum number of resources of each type that it may need.

The deadlock-avoidance algorithm dynamically examines the
resource-allocation state to ensure that there can never be a
circular-wait condition.

Resource-allocation state is defined by the number of available and
allocated resources, and the maximum demands of the processes.

Deadlock Detection

* |If a system does not employ either a deadlock-prevention or a
deadlock avoidance algorithm, then a deadlock situation may
occur. In this environment, the system must provide:

 An algorithm that examines the state of the system to
determine whether a deadlock has Occurred.

1 An algorithm to recover from the deadlock

Memory Management

» Program must be brought (from disk) into memory
and placed within a process for it to be run.

» Main memory and registers are only storage CPU can
access directly. Register access in one CPU clock (or
less).

» Main memory can take many cycles.
» Cache sits between main memory and CPU registers.

» Protection of memory required to ensure correct
operation.

Base and Limit Registers

B A pair of base and limit registers define the logical
address space.

0
operating
system
256000
process
300040) 300040
process base
420940 s 120900 |
—— limit
880000
1024000

Logical vs. Physical Address Space

B The concept of a logical address space that is
bound to a separate physical address space is
central to proper memory management

e Logical address — generated by the CPU; also
referred to as virtual address

® Physical address — address seen by the
memory unit

B |Logical and physical addresses are the same in
compile-time and load-time address-binding
schemes; logical (virtual) and physical addresses
differ in execution-time address-binding scheme

Memory-Management Unit (mmu)

Hardware device that maps virtual to physical address.

In MMU scheme, the value in the relocation register is
added to every address generated by a user process
at the time it is sent to memory.

The user program deals with /ogical addresses; it
never sees the real physical addresses.

Dynamic relocation using a relocation register

relocation
register

14000
logical physical

address address
CPU + > memory
346 14346

MMU

Contiguous Allocation

® Main memory usually into two partitions:

e Resident operating system, usually held in low memory with
interrupt vector

e User processes then held in high memory

B Relocation registers used to protect user processes from each
other, and from changing operating-system code and data

e Base register contains value of smallest physical address

o Limit register contains range of logical addresses — each logical
address must be less than the limit register

e MMU maps logical address dynamically

Contiguous Allocation (Cont.)

m Multiple-partition allocation

e Hole — block of available memory; holes of various size are
scattered throughout memory

» When a process arrives, it is allocated memory from a hole
large enough to accommodate it

e Operating system maintains information about:
a) allocated partitions b) free partitions (hole)

05 0SS 0SS 0s
process 5 process 2 process 3 process 9
process 9 process 9
process 8 process 10
process 2 process 2 process 2 process 2

Dynamic Storage-Allocation Problem

How to satisfy a request of size nfrom a list of free holes

m First-fit: Allocate the first hole that is big enough

m Best-fit: Allocate the smallest hole that is big enough;
must search entire list, unless ordered by size

e Produces the smallest leftover hole

m Worst-fit: Allocate the largest hole; must also search
entire list

e Produces the largest leftover hole

First-fit and best-fit better than worst-fit in terms of
speed and storage utilization

Segmentation

B Memory-management scheme that supports user view of memory

B Aprogramis a collection of segments. A segmentis a logical unit
such as:

main program,

procedure,

function,

method,

object,

local variables, global variables,
common block,

stack,

symbol table, arrays

User’s View of a Program

subroutine stack
symbol
table
sqri
. main
program

logical address

Segmentation Architecture

Logical address consists of a two table:
<segment-number, offset>,

Segment table — maps two-dimensional physical addresses;
each table entry has:

e base — contains the starting physical address where the
segments reside in memory

o limit — specifies the length of the segment

Segment-table base register (STBR) points to the segment
table’s location in memory

Segment-table length register (STLR) indicates number of
segments used by a program;

segment number sis legal if s < STLR

Segmentation Architecture (Cont.)

m Protection
e With each entry in segment table associate:

» validation bit = 0 = illegal segment
» read/write/execute privileges

B Protection bits associated with segments; code sharing
occurs at segment level

B Since segments vary in length, memory allocation is a
dynamic storage-allocation problem

B A segmentation example is shown in the following
diagram

Segmentation Hardware

limit |base
segment
table
CPU = S d
5
. ye
no
Y

trap: addressing error physical memory

Virtual Memory

Virtual Memory

m Background
B Page Replacement

B Memory-Mapped Files

Background

B Virtual memory — separation of user logical memory
from physical memory.

e Only part of the program needs to be in memory for
execution

e Logical address space can therefore be much larger than
physical address space

e Allows address spaces to be shared by several processes

e Allows for more efficient process creation.

B Virtual memory can be implemented via:
e Demand paging
e Demand segmentation

Virtual Memory That is Larger Than Physical Memory

page O

page 1

page 2 P

— HHBE
\ | N EEE

— EEN
——— 0 @
EEN
" .

page v physical
memory

\

/

virtual
menmory

Demand Paging

B Bring a page into memory only when it is
needed

® [ess I/O needed
® Less memory needed

e Faster response

B Page is needed = reference to it.
e invalid reference = abort.

e not-in-memory = bring to memory.

Transfer of a Paged Memory to Contiguous Disk Space

.
- \\._‘q_‘___—___._._,,_.a/

swap out Bl B 12 e |
iy s ol o o 7
4 8] s[CHo[1]
12[hs[ha(his[]
R “_ swap in 16[117[118[119[]
20 J21[Je2[J23[]
.

main
Mmemory

Valid-Invalid Bit

® With each page table entry a valid—invalid bit is associated
(v = in-memory, i = not-in-memory)

m [nitially valid—invalid bit is set to i on all entries
B Example of a page table :

Frame # valid-invalid bit

page table

® During address translation, if valid—invalid bit in page table entry
is | = page fault

Page Fault

B |[fthere is a reference to a page, first reference to
that page will trap to operating system:

page fault
1. Operating system looks at another table to decide:
e |nvalid reference — abort
e Just not in memory
Get empty frame
Swap page into frame
Reset tables
Set validation bit=v

o O e W N

Restart the instruction that caused the page fault

Steps in Handling a Page Fault

load M

page is on
backing store ,f““"dd__“—_“““HH
opearating
system @
refeg)nce trap
restart page lable
instruction
free frame e
reset page bring In
table missing page
physical

memory

Page Replacement

B Prevent over-allocation of memory by modifying page-
fault service routine to include page replacement.

B Use modify bit to reduce overhead of page transfers —
only modified pages are written to disk.

B Page replacement completes separation between
logical memory and physical memory — large virtual
memory can be provided on a smaller physical
memory.

Basic Page Replacement

. Find the location of the desired page on disk

. Find a free frame:

- |If there is a free frame, use it.
- If there is no free frame, use a page replacement
algorithm to select a victim frame

. Bring the desired page into the (newly) free frame;
update the page and frame tables

. Restart the process

Page Replacement

|frarna valid—invalid bit

N ¥
change
o |i to invalid
116
resel page
s tahls table for
Pag new page

victim

physical
MEMmory

swap out
victim

®page

@ swap

desired
page in

>

Page Replacement Algorithms

First-In-First-Out (FIFO) Algorithm

B Reference string: 1, 2,3.4.1,2,5,1,2,3, 4.5
B 3 frames (3 pages can be in memory at a time per process)

B 4 frames

e L e

L B E I I

-

L o

5

9 page faults

10 page faults

Optimal Algorithm

® Heplace page that will not be used for longest period of time
B 4 frames example
1.2.844.2.585 1.2 385

1 -

6 page faults

2
3
4

n

®m How do you know this?

Least Recently Used (LRU) Algorithm

m Referencestring: 1,2, 3, 4,1,2,5,1,2, 3,4, 5

1{[1]]1]]1

W] o

2|2
5|4
3|3

| WM
= | N | M

® Counter implementation

e Every page entry has a counter; every time page is referenced
through this entry, copy the clock into the counter

¢ When a page needs to be changed, look at the counters to
determine which are to change

Secondary Storage Systems

Overview of Secondary Storage Structure

B Magnetic disks provide bulk of secondary storage of
modern computers

e Drives rotate at 60 to 200 times per second

e [ransfer rate is rate at which data flow between drive
and computer

e Positioning time (random-access time) is time to move
disk arm to desired cylinder (seek time) and time for
desired sector to rotate under the disk head (rotational
latency)

Overview of Secondary Storage Structure

B Disks can be removable

®m Drive attached to computer via /O bus

e Busses vary, including EIDE, ATA, SATA, USB, Fibre
Channel, SCSI

e Host controller in computer uses bus to talk to disk
controller built into drive or storage array

Moving-head Disk Mechanism

«— spindle

«— arm assembly

read-write
head

cylinder ¢

platter

LD

rotation

Overview of Secondary Storage Structure

® Magnetic tape
e Was early secondary-storage medium

e Relatively permanent and holds large quantities of
data

e® Access time slow
e Random access ~1000 times slower than disk

e Mainly used for backup, storage of infrequently-used
data, transfer medium between systems

e 20-200GB typical storage

Disk Scheduling

The operating system is responsible for using hardware efficiently —

for the disk drives, this means having a fast access time and disk
bandwidth

Access time has two major components

e Seek time is the time for the disk to move the heads to the
cylinder containing the desired sector

e Rotational latency is the additional time waiting for the disk to
rotate the desired sector to the disk head

B Minimize seek time

B Seek time = seek distance

Disk bandwidth is the total number of bytes transferred, divided by
the total time between the first request for service and the
completion of the last transfer

FCFS

lllustration shows total head movement of 640 cylinders

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
0 14 37 536567 98 122124 183199

SSTF (Cont)

10

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

14 37 536567 98 122124

SCAN (Cont.)

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
0 14 37 536567 08 122124

C-SCAN (Cont)

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
14 37 536567 98 122124 183199

C-LOOK (Cont)

head starts at 53
10 14 37 536567

queue 98, 183, 37, 122, 14, 124, 65, 67

98 122124 183199

File System Implementation

File System Implementation

B File-System Structure
B File-System Implementation

B Allocation Methods

File-System Structure

m File structure

e Logical storage unit

e Collection of related information
B File system resides on secondary storage (disks)
m File system organized into layers

B File control block—storage structure consisting of
iInformation about a file

File-System Structure

B the I/O control, consists of device drivers and interrupt
handlers to transfer information between the memory and
the disk system.

B A device driver can be thought of as a translator.

Allocation Methods

B An allocation method refers to how disk blocks
are allocated for files:

B The direct-access nature of disks allows us flexibility in the
implementation of files. In almost every case, many files will be
stored on the same disk. The main problem is how to allocate space
to these files so that disk space is utilized effectively and files can be
accessed quickly.

B Three major methods of allocating disk space are in wide
use:

e Contiguous allocation
e Linked allocation
® Indexed allocation

Contiguous Allocation of Disk Space

© directory
L file start length
i o | af | count O 2
f tr 14 3
a[] 5[1 e[] 7] wall 49 5
81 o J1o[1111 bt <8 @
tr f 6 2
12[113 114 15[]
16[_117[_ 18] 119l |
mall
2021 J22[J23[]
24 |25(126 127]
list
28[J29[130 131[]

M

Linked Allocation

m Each file is a linked list of disk blocks: blocks may
be scattered anywhere on the disk.

B The directory contains a pointer to the first and last blocks
of the file.

B Simple -need only starting address
B Free-space management system —-no waste of space

block

pointer

Linked Allocation

directory
file start end
jeep 9 25

17[_J18[]19[]

205212523[3
24 |25F126[127[]

28 29[[30[|31[|

xg’,./

Example of Indexed Allocation

directory
file Index block
o] 11 201 31 IR 19

16
20 |21 _|e2[A23
24 Jos[26 127]

28 120[130131]
_z"’//

Protection

PROTECTION

DOMAIN OF PROTECTION
SECURITY
CRYPTOGRAPHY
AUTHENTICATION

Goals of Protection

® Operating system consists of a collection of
objects, hardware or Software.

m Each object has a unigue nhame and can be
accessed through a well-defined set of
operations.

B Protection problem -ensure that each object is
accessed correctly and only by those processes
that are allowed to do so.

Domain Structure

B Access-right = <object-name, rights-set>

B where rights-set is a subset of all valid
operations that can be performed on the
object.

B Domain = set of access-rights

D,

4«4 {read, write} = (/\ :
< 0., {read, write} = < C}E {write} >| < O {pr:nt} > EHESUEE} =
\\ 0., {execute}/ \ {rea }
e

The Security Problem

Security must consider external environment of the
system, and protect the system resources

Intruders (crackers) attempt to breach security
Threat is potential security violation

Attack is attempt to breach security

Attack can be accidental or malicious

Easier to protect against accidental than malicious
misuse

Standard Security Attacks

Secure Communication over Insecure Medium

- -
- s,
encryption encryolion
by b alganthm
o E o
/,4-’ ; B e i i
", i | B
ey) 3. v
exchangs Bg & & =— attacker
R . B =i
g ,_i_.h
,“'f i
decrygtion o decrypiion
key K algarihm
- B o
. -
i
[
Ll
read MEsEane M

Cryptography as a Security Tool

m “Encryption” is the transformation of data into a form,
which is almost impossible to read without some shared
secrets. The purpose is to ensure privacy by keeping
information hidden from anyone except the intended
ones.

B “Decryption” is the reverse of encryption; that is the
transformation of encrypted data back to a meaningful

form.
Keyl Key2

Plaintext 1 (: Plaintext
Encryption] T: Decryption

Authentication

B The authentication system is the first line to prevent
unauthorized users from gaining access to the
system|5]. Authentication Is mechanism by which a
process verifies the communication partner is who it is
supposed to be and not an imposter.

User Authentication

Crucial to identify user correctly, as protection systems depend on
user ID

User identity most often established through passwords, can be
considered a special case of either keys or capabilities

e Also can include something user has and /or a user attribute

Passwords must be kept secret
¢ Frequent change of passwords
e Use of “non-guessable” passwords
e Log all invalid access attempts

Passwords may also either be encrypted or allowed to be used only
once

