
Computer Architecture ………………………………… Lecture No.3

14

4. Measuring Performance

Before we start to examine better processor designs we need to be able to

evaluate their relative performance characteristics, i.e., understand what “better”

means. The problem is that performance can be a difficult concept to define

exactly. It is often more instructive to think about the overall quality of a design

rather than performance. Quality can combine lots of different features as dictated

by different application or market areas; a cost function will determine how quality

is evaluated by combining many metrics. For example, one might worry about how

quickly a processor executes a given program, or how much power is used during

execution. In most designs, such metrics compete for resources in the sense that no

one can be satisfied without being detrimental to another; some form of trade-off or

compromise must be reached, one can think of this as maximizing the cost function

in some way.

For a general circuit, perhaps the most simple metric one can consider is how

quickly it operates. This can be further decomposed into two standard measures.

Definition 1. The latency of a circuit is the total time elapsed before a given input

is operated on to produce an output. The bandwidth or throughput of a circuit is

the rate at which new inputs can be offered (or outputs produced).

The difference is somewhat subtle but we will see why both are important when we

look at improving performance: for now, simply consider latency. From the basic

definition, one can try to capture what is meant by performance.

Definition 2. The performance of design X is inversely proportional to latency

Computer Architecture ………………………………… Lecture No.3

15

From this, we can define what is meant by the statement “design X is n times

faster than design Y”. That is, if n is the speed-up offered by design X over design

Y, then

 = n

In the context of a processor rather than a general circuit, one typically uses

execution time in place of latency; that is, the time taken to execute a given

program.

Computer Architecture ………………………………… Lecture No.3

16

Computer Architecture ………………………………… Lecture No.3

17

Estimating Execution Time

There are plenty of bad ways to evaluate the performance of a processor that

are none-the-less still used in marketing literature. A prime example is the Millions

of Instructions Per Second (MIPS) metric. Essentially the MIPS metric measures

how many instructions a processor can execute each second: the assertion is that

the more instructions executed each second, the higher the performance. One might

therefore try to estimate the execution time of program X on processor Y using

This is an intuitive, easy to understand measure with which one can compare

the performance of processors. In fact, in the 1970s the performance of computers

was quoted relative to a baseline computer; the VAX 11/780 was said to represent

Computer Architecture ………………………………… Lecture No.3

18

1 VAX MIPS, the VAX executed one million instructions per-second. The problem

is, this method of comparison is quite flawed. In particular, it should be clear that a

RISC processor will typically take many instruction to execute a given program

since each instruction performs a relatively simple operation; a CISC processor will

typically take less instructions since each instruction performs more complex

operations. Comparing one with the other is nonsense: we need a performance

metric that includes the idea of amount of useful work done. That is, a RISC

processor will almost always have a higher MIPS rating than a CISC alternative;

regardless of the design quality. In addition, the MIPS rating is tied to the clock

speed of the physical processor. In theory at least, it would be nice to evaluate the

quality of a design independently from the clock speed.

The Cycles Per-Instruction (CPI) metric hopes to solve this problem to some

extent. It measures the average number of clock cycles needed per-instruction and

varies according to the processor architecture and the program being executed. The

instruction mix for a processor tells us what ratio of different instruction types are

used in the average program. For example, we might note that 40% of instructions

perform arithmetic, 40% perform memory access and 20% perform branches. The

process of discovering the instruction mix for a processor is called workload

characterization; we typically use a range of benchmark programs to produce an

overall picture of how often different instructions are used.

Given the instruction mix and the CPI for each instruction type, we can

estimate the overall CPI for the processor. The CPI for each instruction is easily

identified; typically they are quoted as part of the processor manual. Let CPI i

denote the CPI for instruction type i and Fi denote how often instruction type i is

executed. The overall CPI is then calculated as :

Computer Architecture ………………………………… Lecture No.3

19

Consider an example instruction mix:

Using the overall CPI, we can then estimate how long a given program will

take to execute. Firstly we can estimate the number of cycles the program will take

to execute; this requires we know the number of instructions executed by the

program and the overall CPI for the processor as computed above. Then, for

program X on processor Y we have

 CYCLES(X,Y) = INSTRUCTION-COUNT(X) · CPI(Y).

Finally we can estimate the execution time by dividing the number of cycles by the

clock rate:

Computer Architecture ………………………………… Lecture No.3

20

Another measure is a Million floating-point instructions per second

(MFLOP): (rate of floating-point instruction execution per unit time) has also been

used as a measure for machines’ performance. It is defined as:

While MIPS measures the rate of average instructions, MFLOPS is only

defined for the subset of floating-point instructions. An argument against MFLOPS

is the fact that the set of floating-point operations may not be consistent across

machines and therefore the actual floating-point operations will vary from machine

to machine. Yet another argument is the fact that the performance of a machine for

a given program as measured by MFLOPS cannot be generalized to provide a

single performance metric for that machine.

In another references, we note the previous performance metrics (CPI &

MIPS) as follows (as the same ideas):

 CPI (Clock cycles Per Instruction) : Now we need to define the

clock cycle time as the time between two consecutive rising edges of a periodic

clock signal :

 The time required to execute a job by a computer is often expressed in terms of

clock cycles.

Computer Architecture ………………………………… Lecture No.3

21

Also , We denote the number of CPU clock cycles for executing a job to be

the cycle count (CC), the cycle time by CT, and the clock frequency by f = 1/CT.

The time taken by the CPU to execute a job can be expressed as:

It may be easier to count the number of instructions executed in a given

program as compared to counting the number of CPU clock cycles needed for

executing that program. Therefore, the average number of Clock cycles Per

Instruction (CPI) has been used as an alternate performance measure. The

following equation shows how to compute the CPI:

It is known that the instruction set of a given machine consists of a number

of instruction categories: ALU (simple assignment and arithmetic and logic

instructions), load, store, branch, and so on. In the case that the CPI for each

instruction category is known, the overall CPI can be computed as :

where Ii is the number of times an instruction of type i is executed in the program

and CPIi is the average number of clock cycles needed to execute such instruction.

Computer Architecture ………………………………… Lecture No.3

22

Ex1: Consider computing the overall CPI for a machine A for which the following

performance measures were recorded when executing a set of benchmark

programs. Assume that the clock rate of the CPU is 200 MHz.

Assuming the execution of 100 instructions, the overall CPI can be computed as :

MIPS (million instructions-per-second): It is (the rate of instruction execution

per unit time)), which is defined as:

Ex2 : Suppose that the same set of benchmark programs considered above were

executed on another machine, call it machine B, for which the following measures

were recorded.

What is the MIPS rating for the machine considered in the previous example

(machine A) and machine B assuming a clock rate of 200 MHz?

Computer Architecture ………………………………… Lecture No.3

23

Home Work: compute MIPS for two different machines running a given set of

benchmark programs:

