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Prime number 
A prime number (or a prime) is a natural number greater than 1 that has no positive 
divisors other than 1 and itself. A natural number greater than 1 that is not a prime 
number is called a composite number. For example 5 is prime, as only 1 and 5 divide it, 
whereas 6 is composite, since it has the divisors 2 and 3 in addition to 1 and 6. The 
fundamental theorem of arithmetic establishes the central role of primes in number 
theory: any integer greater than 1 can be expressed as a product of primes that is unique 
up to ordering. This theorem requires excluding 1 as a prime. 

The property of being prime is called primality. A simple but slow method of verifying 
the primality of a given number n is known as trial division. It consists of testing whether 
n is a multiple of any integer between 2 and √n. Algorithms that are much more efficient 
than trial division have been devised to test the primality of large numbers. Particularly 
fast methods are available for primes of special forms, such as Mersenne primes. As of 
2011, the largest known prime number has nearly 13 million decimal digits. 

There are infinitely many primes, as demonstrated by Euclid around 300 BC. There is no 
known useful formula that yields all of the prime numbers and no composites. However, 
the distribution of primes, that is to say, the statistical behaviour of primes in the large, 
can be modeled. The first result in that direction is the prime number theorem, proven at 
the end of the 19th century, which says that the probability that a given, randomly chosen 
number n is prime is inversely proportional to its number of digits, or the logarithm of n. 

Many questions around prime numbers remain open, such as Goldbach's conjecture, 
which asserts that every even integer greater than 2 can be expressed as the sum of two 
primes, and the twin prime conjecture, which says that there are infinitely many pairs of 
primes whose difference is 2. Such questions spurred the development of various 
branches of number theory, focusing on analytic or algebraic aspects of numbers. Primes 
are used in several routines in information technology, such as public-key cryptography, 
which makes use of properties such as the difficulty of factoring large numbers into their 
prime factors. Prime numbers give rise to various generalizations in other mathematical 
domains, mainly algebra, such as prime elements and prime ideals. 

Definition and examples 
A natural number 

1, 2, 3, 4, 5, 6, ... 

is called a prime or a prime number if it is greater than 1 and has exactly two divisors, 1 
and the number itself. Natural numbers greater than 1 that are not prime are called 
composite. 
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Among the numbers 1 to 6, the numbers 2, 3, and 5 are the prime numbers, while 1, 4, 
and 6 are not prime. 1 is excluded as a prime number, for reasons explained below. 2 is a 
prime number, since the only natural numbers dividing it are 1 and 2. Next, 3 is prime, 
too: 1 and 3 do divide 3 without remainder, but 3 divided by 2 gives remainder 1. Thus, 3 
is prime. However, 4 is composite, since 2 is another number (in addition to 1 and 4) 
dividing 4 without remainder: 

4 = 2 · 2. 

5 is again prime: none of the numbers 2, 3, or 4 divide 5. Next, 6 is divisible by 2 or 3, 
since 

6 = 2 · 3. 

Hence, 6 is not prime. The image at the right illustrates that 12 is not prime: 12 = 3 · 4. 
More generally, no even number greater than 2 is prime: any such number n has at least 
three distinct divisors, namely 1, 2, and n. This implies that n is not prime. Accordingly, 
the term odd prime refers to any prime number greater than 2. In a similar vein, all prime 
numbers bigger than 5, written in the usual decimal system, end in 1, 3, 7 or 9, since even 
numbers are multiples of 2 and numbers ending in 0 or 5 are multiples of 5. 

If n is a natural number, then 1 and n divide n without remainder. Therefore, the 
condition of being a prime can also be restated as: a number is prime if it is greater than 
one and if none of 

2, 3, ..., n − 1 

divides n (without remainder). Yet another way to say the same is: a number n > 1 is 
prime if it cannot be written as a product of two integers a and b, both of which are larger 
than 1: 

n = a · b. 

In other words, n is prime if n items can not be divided up into smaller equal-sized groups 
of more than one item. 

The smallest 168 prime numbers (all the prime numbers under 1000) are: 

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 
89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 
179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 
269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 
367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 
461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 
571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 
661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 
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773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 
883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997 
(sequence A000040 in OEIS). 

The set of all primes is often denoted P. 

The fundamental theorem of arithmetic 
The crucial importance of prime numbers to number theory and mathematics in general 
stems from the fundamental theorem of arithmetic, which states that every positive 
integer larger than 1 can be written as a product of one or more primes in a way which is 
unique except possibly for the order of the prime factors. Primes can thus be considered 
the “basic building blocks” of the natural numbers. For example: 

23244 = 2 · 2 · 3 · 13 · 149 
 = 22 · 3 · 13 · 149. (22 denotes the square or second power of 2.) 

As in this example, the same prime factor may occur multiple times. A decomposition: 

n = p1 · p2 · ... · pt 

of a number n into (finitely many) prime factors p1, p2, ... to pt is called prime 
factorization of n. The fundamental theorem of arithmetic can be rephrased so as to say 
that any factorization into primes will be identical except for the order of the factors. So, 
albeit there are many prime factorization algorithms to do this in practice for larger 
numbers, they all have to yield the same result. 

If p is a prime number and p divides a product ab of integers, then p divides a or p 
divides b. This proposition is known as Euclid's lemma. It is used in some proofs of the 
uniqueness of prime factorizations. 

The number of prime numbers 
There are infinitely many prime numbers. Another way of saying this is that the sequence 

2, 3, 5, 7, 11, 13, ... 

of prime numbers never ends. This statement is referred to as Euclid's theorem in honor 
of the ancient Greek mathematician Euclid, since the first known proof for this statement 
is attributed to him. Many more proofs of the infinitude of primes are known, including 
an analytical proof by Euler, Goldbach's proof based on Fermat numbers,[11] 
Fürstenberg's proof using general topology, and Kummer's elegant proof.[13] 

Testing primality and integer factorization 
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There are various methods to determine whether a given number n is prime. The most 
basic routine, trial division is of little practical use because of its slowness. One group of 
modern primality tests is applicable to arbitrary numbers, while more efficient tests are 
available for particular numbers. Most such methods only tell whether n is prime or not. 
Routines also yielding one (or all) prime factors of n are called factorization algorithms. 

Trial division 

The most basic method of checking the primality of a given integer n is called trial 
division. This routine consists in dividing n by each integer m which is greater than 1 and 
less than or equal to the square root of n. If the result of any of these divisions is an 
integer, then n is not a prime, otherwise, it is a prime. Indeed, if n = ab is composite (with 
a and b ≠ 1) then one of the factors a or b is necessarily at most √n. For example, for n = 
37, the trial divisions are by m = 2, 3, 4, 5, and 6. None of these numbers divides 37, so 
37 is prime. This routine can be implemented more efficiently if a complete list of primes 
up to √n is known—then trial divisions only need to be checked for those m that are 
prime. For example, to check the primality of 37, only three divisions are necessary (m = 
2, 3, and 5), given that 4 and 6 are composite. 

While a simple method, trial division quickly becomes impractical for testing large 
integers because the number of possible factors grows too rapidly as n increases. 
According to the prime number theorem explained below, the number of prime numbers 
less than √n is approximately given by √n / ln(√n), so the algorithm may need up to this 
number of trial divisions to check the primality of n. For n = 1020, this number is 450 
million—too large for many practical applications. 

Sieves 

An algorithm yielding all primes up to a given limit, such as required in the trial division 
method, is called a sieve. The oldest example, the sieve of Eratosthenes (see above) is 
useful for relatively small primes. The modern sieve of Atkin is more complicated, but 
faster when properly optimized. Before the advent of computers, lists of primes up to 
bounds like 107 were also used.  

Primality testing vs. primality proving 

Modern primality tests for general numbers n can be divided into two main classes, 
probabilistic (or "Monte Carlo") and deterministic algorithms. The former merely "test" 
whether n is prime in the sense that they declare n to be (definitely) composite or 
"probably prime", which latter means that n may or may not be a prime number. 
Composite numbers which do pass a given primality test are referred to as pseudoprimes. 
For example, Fermat's primality test relies on Fermat's little theorem. This theorem says 
for any prime number p, and any integer a not divisible by p, ap − 1 − 1 is divisible by p. 
Thus, if an − 1 − 1 is not divisible by n, n cannot be prime. However, conversely, n may be 
composite even if this divisibility holds. In fact, there are infinitely many composite 
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numbers n which pass the Fermat primality test for every choice of a that is coprime with 
n (Carmichael numbers), for example n = 561. 

Applications 
For a long time, number theory in general, and the study of prime numbers in particular, 
was seen as the canonical example of pure mathematics, with no applications outside of 
the self-interest of studying the topic. In particular, number theorists such as British 
mathematician G. H. Hardy prided themselves on doing work that had absolutely no 
military significance.[37] However, this vision was shattered in the 1970s, when it was 
publicly announced that prime numbers could be used as the basis for the creation of 
public key cryptography algorithms. Prime numbers are also used for hash tables and 
pseudorandom number generators. 

Some rotor machines were designed with a different number of pins on each rotor, with 
the number of pins on any one rotor either prime, or coprime to the number of pins on 
any other rotor. This helped generate the full cycle of possible rotor positions before 
repeating any position. 

The International Standard Book Numbers work with a check digit, which exploits the 
fact that 11 is a prime. 

Arithmetic modulo a prime and finite fields 

Modular arithmetic modifies usual arithmetic by only using the numbers 

 

where n is a fixed natural number called modulus. Calculating sums, differences and 
products is done as usual, but whenever a negative number or a number greater than n−1 
occurs, it gets replaced by the remainder after division by n. For instance, for n = 7, the 
sum 3 + 5 is 1 instead of 8, since 8 divided by 7 has remainder 1. This is referred to by 
saying "3 + 5 is congruent to 1 modulo 7" and is denoted 

 

Similarly, 6 + 1 ≡ 0 (mod 7), 2 − 5 ≡ 4 (mod 7), since −3 + 7 = 4, and 3 · 4 ≡ 5 (mod 7) as 
12 has remainder 5. Standard properties of addition and multiplication familiar from the 
integers remain valid in modular arithmetic. In the parlance of abstract algebra, the above 
set of integers, which is also denoted Z/nZ, is therefore a commutative ring for any n. 
Division, however, is not in general possible in this setting. For example, for n = 6, the 
equation 
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a solution x of which would be an analogue of 2/3, cannot be solved, as one can see by 
calculating 3 · 0, ..., 3 · 5 modulo 6. The distinctive feature of prime numbers is the 
following: division is possible in modular arithmetic if and only if n is a prime. 
Equivalently, n is prime if and only if all integers m satisfying 2 ≤ m ≤ n − 1 are coprime 
to n, i.e. their only common divisor is one. Indeed, for n = 7, the equation 

 

has a unique solution, x = 3. Because of this, for any prime p, Z/pZ (also denoted Fp) is 
called a field or, more specifically, a finite field since it contains finitely many, namely p, 
elements. 

A number of theorems can be derived from inspecting Fp in this abstract way. For 
example, Fermat's little theorem, stating 

 

for any integer a not divisble by p, may be proved using these notions. This implies 

 

Giuga's conjecture says that this equation is also a sufficient condition for p to be prime. 
Another consequence of Fermat's little theorem is the following: if p is a prime number 
other than 2 and 5, 1/p is always a recurring decimal, whose period is p − 1 or a divisor of 
p − 1. The fraction 1/p expressed likewise in base q (rather than base 10) has similar 
effect, provided that p is not a prime factor of q. Wilson's theorem says that an integer 
p > 1 is prime if and only if the factorial (p − 1)! + 1 is divisible by p. Moreover, an 
integer n > 4 is composite if and only if (n − 1)! is divisible by n. 

Other mathematical occurrences of primes 

Many mathematical domains make great use of prime numbers. An example from the 
theory of finite groups are the Sylow theorems: if G is a finite group and pn is the highest 
power of the prime p which divides the order of G, then G has a subgroup of order pn. 
Also, any group of prime order is cyclic (Lagrange's theorem). 

Public-key cryptography 

Main article: Public key cryptography 

Several public-key cryptography algorithms, such as RSA and the Diffie–Hellman key 
exchange, are based on large prime numbers (for example 512 bit primes are frequently 
used for RSA and 1024 bit primes are typical for Diffie–Hellman.). RSA relies on the 
fact that it is thought to be much easier (i.e., more efficient) to perform the multiplication 
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of two (large) numbers x and y than to calculate x and y (assumed coprime) if only the 
product xy is known. The Diffie–Hellman key exchange relies on the fact that there are 
efficient algorithms for modular exponentiation, while the reverse operation the discrete 
logarithm is thought to be a hard problem. 

Prime numbers in nature 

Inevitably, some of the numbers that occur in nature are prime. There are, however, 
relatively few examples of numbers that appear in nature because they are prime. 

One example of the use of prime numbers in nature is as an evolutionary strategy used by 
cicadas of the genus Magicicada. These insects spend most of their lives as grubs 
underground. They only pupate and then emerge from their burrows after 13 or 17 years, 
at which point they fly about, breed, and then die after a few weeks at most. The logic for 
this is believed to be that the prime number intervals between emergences make it very 
difficult for predators to evolve that could specialize as predators on Magicicadas. If 
Magicicadas appeared at a non-prime number intervals, say every 12 years, then 
predators appearing every 2, 3, 4, 6, or 12 years would be sure to meet them. Over a 200-
year period, average predator populations during hypothetical outbreaks of 14- and 15-
year cicadas would be up to 2% higher than during outbreaks of 13- and 17-year 
cicadas.[40] Though small, this advantage appears to have been enough to drive natural 
selection in favour of a prime-numbered life-cycle for these insects. 

There is speculation that the zeros of the zeta function are connected to the energy levels 
of complex quantum systems 


