

36

Stack Frame

Java stores stuff in two separate pools of memory: the stack and the heap. The heap stores all
objects, including all arrays, and all class variables (i.e. those declared "static"). The stack stores
all local variables, including all parameters.
When a method is called, the Java Virtual Machine creates a stack frame (also known as an
activation record) that stores the parameters and local variables for that method. One method can
call another, which can call another, and so on, so the JVM maintains an internal stack of stack
frames, with "main" at the bottom, and the most recent method call on top.

The Stack Frame
The stack frame has three parts: local variables, operand stack, and frame data. The sizes of
the local variables and operand stack, which are measured in words, depend upon the needs of
each individual method. These sizes are determined at compile time and included in the class file
data for each method. The size of the frame data is implementation dependent.

Local Variables
The local variables section of the Java stack frame is organized as a zero-based array of words.
Instructions that use a value from the local variables section provide an index into the zero-based
array. Values of type int, float, reference, and return Address occupy one entry in the local
variables array. Values of type byte, short, and char are converted to int before being stored into
the local variables. Values of type long and double occupy two consecutive entries in the array.
Figure 1 shows the local variables section for the following two methods:

class Example3a {
 public static int runClassMethod(int i, long l, float f, double d, Object o, byte b) {
 return 0;
 }
 public int runInstanceMethod(char c, double d, short s, boolean b) {
 return 0;
 }
}

Figure 1. Methods parameters on the local variables section of a Java stack.

37

When a method finishes executing, its stack frame is erased from the top of the stack, and its
local variables are erased forever.
The java.lang library has a method "Thread.dumpStack" that prints a list of the methods on the
stack (but it doesn't print their local variables). This method can be convenient for debugging--
for instance, when you're trying to figure out which method called another method with illegal
parameters that made it crash.

Parameter Passing
As in Scheme, Java passes all parameters by value. This means that the method has copies of the
actual parameters, and cannot change the originals. The copies reside in the method's stack frame
for the method. The method can change these copies, but the original values that were copied
are not changed.
In this example, the method doNothing sets its parameter to 2, but it has no effect on the value of
the calling method's variable a:

method:
static void doNothing(int x) {
 x = 2;
 }
method call:

int a = 1;
doNothing(a);

STACK (just before method returns)

x | 2 |
 ----- stack frame for doNothing

a | 1 |
 ----- stack frame for main

When the method call returns, a is still 1. The doNothing method, as its name suggests, failed to
change the value of a, or do anything relevant at all.

However, when a parameter is a reference to an object, the reference is copied, but the object is
not; the original object is shared. A method can modify an object that one of its parameters
points to, and the change will be visible everywhere. Here's an example that shows how a
method can make a change to an object that is visible to the calling method:

method:

class IntBox {
 public int i;
 static void set3(IntBox ib) {
 ib.i = 3;
 }
method call:
 IntBox b = new IntBox();
 set3(b);

STACK | HEAP
 set3|
 ----- |
 ib | .-+--------------|
 ----- | |
 | |
 ------------------| |
 ----- | ------
 b | .-+------------->|i |3|
 ----- main| ------

For those of you who are familiar with programming languages that have "pass by reference,"
the example above is as close as you can get in Java. But it's not "pass by reference." Rather, it's
passing a reference by value.

38

Here's an example of a common programming error, where a method tries and fails to make a
change that is visible to the calling method. (Assume we've just executed the example above, so
b is set up.)
method:

class IntBox {
 static void badSet4(IntBox ib) {
 ib = new IntBox();
 ib.i = 4;
}

method call:

badSet4(b);

 STACK | HEAP
 badSet4|
 ----- | ------
 ib | .-+------------->|i |4|
 ----- | ------
 |
 --------------------|
 ----- | ------
 b | .-+------------->|i |3|
 ----- main| ------

JAVA PACKAGES
In Java, a package is a collection of classes and Java interfaces. Packages have three benefits.

(1) Packages can contain hidden classes that are used by the package but are not visible or
accessible outside the package.
(2) Classes in packages can have fields and methods that are visible by all classes inside the
package, but not outside.
(3) Different packages can have classes with the same name. For example, java.awt.Frame and
photo.Frame.

Here are two examples of packages.

(1) java.io is a package of I/O-related classes in the standard Java libraries.
(2) "list", a package containing the classes DList and DListNode. You will be adding two
additional classes to the list package.

Package names are hierarchical. java.awt.image. Model refers to the class Model inside the
package image inside the package awt inside the package java.

Java API Packages

39

java.lang: Language support classes. These are the classes that Java compiler itself uses and
therefore they are automatically imported. They include classes of primitive types, strings, math
functions, threads and exceptions.
java.util: Language utility classes such as vector, hash tables, random numbers, data etc.
java.io: Input/output support classes. They provide facilities for the input and output of data
java.awt: set of classes for implementing graphical user interface. They include classes for
windows, buttons, lists, menus and so on.
java.net: Classes for networking. They include classes for communicating with local computers
as well as with internet servers.
java.applet: Classes for creating and implementing applets.

Package java.util

Contains the collections framework, legacy collection classes, event model, date and time
facilities, internationalization, and miscellaneous utility classes (a string tokenize, a random-
number generator, and a bit array).

Interface Summary

Collection The root interface in the collection hierarchy.

Comparator A comparison function, which imposes a total ordering on some collection of
objects.

Enumeration An object that implements the Enumeration interface generates a series of
elements, one at a time.

EventListener A tagging interface that all event listener interfaces must extend.

Iterator An iterator over a collection.

List An ordered collection (also known as a sequence).

ListIterator
An iterator for lists that allows the programmer to traverse the list in either
direction, modify the list during iteration, and obtain the iterator's current
position in the list.

Map An object that maps keys to values.

Map.Entry A map entry (key-value pair).

Observer A class can implement the Observer interface when it wants to be informed of
changes in observable objects.

RandomAccess Marker interface used by List implementations to indicate that they support fast
(generally constant time) random access.

Set A collection that contains no duplicate elements.

SortedMap
A map that further guarantees that it will be in ascending key order, sorted
according to the natural ordering of its keys (see the Comparable interface), or
by a comparator provided at sorted map creation time.

SortedSet A set that further guarantees that its iterator will traverse the set in ascending

40

element order, sorted according to the natural ordering of its elements (see
Comparable), or by a Comparator provided at sorted set creation time.

