
Algorithm Design And Analysis Asst. Prof. Ali Kadhum Idrees

 Department of Computer Science College of Science for Women 1

3.1.2.2. Step-Count Method:

 As noted in some of the examples on operations count, the operation-

count method of estimating time complexity omits accounting for the time

spent on all but the chosen operations. In the step-count method, we attempt

to account for the time spent in all parts of the program/function. The step-

count is a function of the instance characteristics (e.g., the number of inputs,

the number of outputs, the magnitudes of inputs and outputs). The number of

steps is computed as a function of some subset of these.

The step-count method is a measure to estimate the time complexity

where the number of steps any program statement is to be assigned depends

on the nature of that statement. The following discussion considers the various

statement types that can appear in a Pascal program and states the

complexity of each in terms of the number of steps.

 Comments: comments are nonexecutable statements and have a step

count of zero.

 Declarative statements: this includes all statements of type const, label,

type, and var. these counts as zero steps as these are either

nonexecutable or their cost may be lumped into the cost of invoking the

procedure/function they are associated with.

 Expressions and assignment statements: most expressions have a step

count of one. The exceptions are expressions that contain function calls.

In this case, we need to determine the cost of invoking the functions.

This cost can be large if the function employ many-element value

parameters as the values of all actual parameters need to be assigned

to the formal parameters. This is discussed future under procedure and

function invocation. When the expression contains functions, the step

count is the sum of the step counts assignable to each function

invocation.

Algorithm Design And Analysis Asst. Prof. Ali Kadhum Idrees

 Department of Computer Science College of Science for Women 2

The assignment statement <variable> := <expr> has a step count

equal to that of <expr> unless the size of <variable> is a function of the

instance characteristics. In this later case, the step count is the size of

<variable> plus the step count of <expr>. For example, the assignment

a := b where a and b are of type ElementList has a step count equal to

the size of ElementList.

 Iteration statements: this class of statements includes the For, While,

and Until statements. We shall consider the step counts only for the

control part of these statements. These have the form:

 For i:= <expr> to <expr> do
 For i:= <expr> downto <exprl> do
 While <expr> do

 Until <expr>;
 Each execution of the control part of a while and until statement will be

given a step count equal to the number of step counts assignable to

<expr>. The step count for each execution of the control part of a For

statement is one, unless the counts attributable to <expr> and <exprl>

are a function of the instance characteristics. In this latter case, the first

execution of the control part of the For has a step count equal to the

sum of the counts for <expr> and <exprl> (note that these expressions

are computed only when the loop is started). Remaining executions of

the For have a step counts of one.

 Case statement: this statement consists of a header followed by one or

more sets of condition and statement pairs.

Case <expr> of
 Cond1: <statement1>
 Cond2: <statement2>
 .
 .
 .
 Else: <statement>
End;

Algorithm Design And Analysis Asst. Prof. Ali Kadhum Idrees

 Department of Computer Science College of Science for Women 3

The cost of the header Case <expr> of is given a cost equal to that

assignable to <expr>. The cost of each following condition-statement

pair is the cost of this condition plus that of all preceding conditions plus

that of this statement.

 If-Then-Else statements: the if-then-else statement consists of three

parts:

 If <expr>
 Then <statement 1>
 Else <statement 2>
 Each part is assigned the number of steps corresponding to <expr>,

<statement 1>, and <statement 2> respectively, note that if the else

clause is absent, then no cost is assigned to it.

 Procedure and Function invocation: all invocations of procedures and

functions count as one step unless the invocation involves value

parameters whose size depends on the instance characteristics. In this

latter case, the count is the sum of the size of these value parameters. In

case the procedure/ function being invoked is recursive, then we must

also consider the local variable in the procedure or function being

invoked. The sizes of local variables that are characteristic dependent

need to be added into the step count.

 Begin, End, With, and Repeat statements: each With statement counts

as one step. Each Begin, End, and Repeat statement counts as zero

steps.

 Procedure and function statements: these count as zero steps as their

cost has already been assigned to the invoking statements.

 Goto statement: this has a step count of one.

Example 1: Find the space and the time complexities for the following function

using step count method.

Function Abc(a, b, c : real) : real;

Begin

Algorithm Design And Analysis Asst. Prof. Ali Kadhum Idrees

 Department of Computer Science College of Science for Women 4

 Abc := a + b + b * c + (a + b – c) / (a + b) + 4;

End;

 Solution:

 Space complexity: One word of type real is a adequate to store the values of

each of a, b, c, 4, and Abc. We see that the space needed by function Abc is

independent of the instance characteristics. Consequently,

 SAbc(a, b, c) = 0

Time complexity:

 TAbc(a, b, c) = 1

Example 2: Find the space and the time complexities for the following function

using step count method.

Function sum1(n : integer) : integer;

 var k, s : integer;

 Begin

 s := 0;

 For k := 1 to n do

 s := s + k;

 sum1 := s;

 End;

Solution:

Space complexity: The function sum1 requires six words of type integer to

store the values of each (n, k, s, sum1, and constants 0, 1). We see that the

space needed by function sum1 (12 Bytes) is independent of the instance

characteristics. Consequently,

Ssum1(n) = 0

Time complexity:

Tsum1(n) = 1 + (n+1) + n + 1 = 2n + 3

Algorithm Design And Analysis Asst. Prof. Ali Kadhum Idrees

 Department of Computer Science College of Science for Women 5

Example 3: Find the space and the time complexities for the following function

using step count method.

Function sum2(a: ElemList ; n : integer) : real;

 var k : integer;

 s: real;

 Begin

 s := 0;

 For k := 1 to n do

 s := s + a[k];

 sum1 := s;

 End;

Solution:

Space complexity: The function sum2 requires six spaces (four of type integer

and two of type real) to store the values of each (n, k, s, sum2,and constants

0, 1). The space needed by a is the space needed by variables of type

ElemList. This is equal to MaxSize. We see that the space needed by function

sum2 is

Ssum2(n) = 16 Bytes + Maxsize

Or Ssum2(n) ≥ n

Note: if we change the formal parameter a from value to reference (or Var),

only the address of the actual parameter gets transferred to the function and

the space needed by the function is independent of instance characteristics

(n), in this case Ssum2(n) = 0.

Time complexity:

Tsum2(n) = 1 + (n+1) + n + 1 = 2n + 3

