
11/11/2014

1

ROUTED
EVENTS

Chapter 5 of Pro WPF : By Matthew MacDonald

Assist Lect. Wadhah R. Baiee . College
of IT – Univ. of Babylon - 2014

Introduction

 Routed events are events with more traveling
power—they can tunnel down or bubble up the
element tree and be processed by event handlers
along the way.

 A routed event can be handled on one element
(such as a label) even though it originates on
another (such as an image inside that label).

11/11/2014

2

Introduction

 Every .NET developer is familiar with the idea of events—
messages that are sent by an object .

 WPF enhances the .NET event model with the concept of
event routing.

 Event routing allows an event to originate in one element
but be raised by another one.

 For example, event routing allows a click that begins in a
toolbar button to rise up to the toolbar and then to the
containing window before it’s handled by your code.

Introduction

11/11/2014

3

Event Routing

 Many controls in WPF are content
controls, and content controls can hold
any type and amount of nested
content.

 For example, you can build a
graphical button out of shapes,
create a label that mixes text and
pictures, or put content in a
specialized container to get a
scrollable or collapsible display. You
can even repeat this nesting process
to go as many layers deep as you
want.

Event Routing

 imagine you have a label like this one, which contains a
StackPanel that brings together two blocks of text and an
image

 consider what happens when you click the image part of
the fancy label shown here.

 Clearly, it makes sense for the Image.MouseDown and
Image.MouseUp events to fire. But what if you want to
treat all label clicks in the same way?

11/11/2014

4

Routed events come in the following three flavors:

 Direct events: These are like ordinary .NET events. They
originate in one element and don’t pass to any other. For
example, MouseEnter (which fires when the mouse pointer
moves over an eleent) is a direct event.

 Bubbling events: These events travel up the containment
hierarchy. For example, MouseDown is a bubbling event.
It’s raised first by the element that is clicked. Next, it’s
raised by that element’s parent, then by that element’s
parent, and so on, until WPF reaches the top of the
element tree.

Routed events come in the following three flavors:

 Tunneling events These events travel down the containment
hierarchy. They give you the chance to preview (and
possibly stop) an event before it reaches the appropriate
control. For example, PreviewKeyDown allows you to
intercept a key press, first at the window level and then in
increasingly more-specific containers until you reach the
element that had focus when the key was pressed.

 Example p111-113 on your textbook.

11/11/2014

5

Attached Events

 many controls have their own more specialized events. The
button is one example—it adds a Click event that isn’t
defined by any base class.

 Imagine that you wrap a stack of buttons in a StackPanel.
You want to handle all the button clicks in one event
handler.

 You can handle all the button clicks by handling the Click
event at a higher level (such as the containing
StackPanel).

Attached Events

 The problem is that the StackPanel doesn’t include a Click
event, so this is interpreted by the XAML parser as an
error. The solution is to use a different attached-event
syntax in the form ClassName.EventName.

11/11/2014

6

Attached Events

 In the DoSomething() event handler, you have several options for
determining which button fired the event. You can compare its text
(which will cause problems for localization) or its name (which is
fragile because you won’t catch mistyped names when you build
the application).

Tunneling Events

 Tunneling events work the same as
bubbling events but in the opposite
direction. For example,

 If MouseUp was a tunneled event
(which it isn’t), clicking the image in the
fancy label example would cause
 MouseUp to fire first in the window,
 then in the Grid,
 then in the StackPanel,
 and so on,

 until it reaches the actual source, which
is the image in the label.

11/11/2014

7

Tunneling Events

 Tunneling events are easy to recognize because
they begin with the word Preview.

 Furthermore, WPF usually defines bubbling and
tunneling events in pairs.

 That means if you find a bubbling MouseUp event,
you can probably also find a tunneling
PreviewMouseUp event.

Tunneling Events

11/11/2014

8

Tunneling Events

 Tunneling events are
useful if you need to
perform some
preprocessing that acts
on certain keystrokes or
filters out certain mouse
actions.

WPF Events

 The most important events usually fall into one of five
categories:
 Lifetime events: These events occur when the element is initialized,

loaded, or unloaded.
 Mouse events: These events are the result of mouse actions.
 Keyboard events: These events are the result of keyboard actions

(such as key presses).
 Stylus events: These events are the result of using the pen-like

stylus, which takes the place of a mouse on a Tablet PC.
 Multitouch events: These events are the result of touching down

with one or more fingers on a multitouch screen. They’re
supported only in Windows 7 and Windows 8.

11/11/2014

9

Multitouch Input

 Multitouch is a way of interacting with an application
by touching a screen.

 What distinguishes multitouch input from old-fashioned
pen input is that multitouch recognizes gestures—
specific ways the user can move more than one finger to
perform a common operation.

Multitouch Input

 A simple multitouch
enabled application
might show multiple
pictures on a virtual
desktop and allow the
user to drag, resize,
and rotate each image
to create a new
arrangement.

11/11/2014

10

Multitouch : WPF provides
three layers of multitouch support:

 Raw touch: This is the lowest level of support, and it gives
you access to every touch the user makes.

 Manipulation: This is a convenient abstraction that
translates raw multitouch input into meaningful gestures
.The common gestures that WPF elements support
include pan, zoom, rotate, and tap.

 Built-in element support: Some elements already react to
multitouch events, with no code required. For example,
scrollable controls such as the ListBox, ListView,
DataGrid, TextBox, and ScrollViewer support touch
panning.

Raw Touch

11/11/2014

11

Raw Touch

What distinguishes this example from a similar mouse
event test is that the user can touch down with
several fingers at once, causing multiple ellipses to
appear, each of which can be dragged about
independently.
Exampl p134-136

Manipulation + Inertia

Sunday’s Next Seminar

