
Subject: Software Engineering

Class room no.:

Department of computer science

3rd Stage

Lecture time: 8:30 AM-2:30 PM

Instructor: Ali Kadhum AL-Quraby

Lecture No. : 4

Second. Incremental development model

 Incremental development is based on the idea of developing an initial

implementation, exposing this تقديمه/عرضهto user comment and evolving it through

several versions until an adequate (sufficient, suitable) system has been developed.

Specification, development, and validation activities are interleaved rather than

separate, with rapid feedback across activities.

 Incremental development model, which is a fundamental part of agile

approaches, is better than a waterfall approach for most business, e-commerce, and

personal systems. This model reflects the way that how the software engineer solves

problems. To solve problem, the solution is divided into a series of steps, backtracking

when we realize that we have made a mistake.

 Each increment or version of the system incorporates some of the functionality

that is needed by the customer. Generally, the early increments of the system include

the most important or most urgently required functionality. This means that the

customer can evaluate the system at a relatively early stage in the development to see

if it delivers what is required. If not, then only the current increment has to be changed

and, possibly, new functionality defined for later increments.

ي راب
م الغ

لي كاظ
 Software Engineering 2 ع

 Incremental development has three important benefits, compared to the

waterfall model:

1. The cost of changing customer requirements is reduced. The amount of analysis

and documentation that has to be redone is much less than is required with the

waterfall model.

2. It is easier to get customer feedback on the development work that has been

done. Customers can comment on demonstrations of the software and see how

much has been implemented. Customers find it difficult to judge progress from

software design documents.

3. Rapid delivery and deployment of useful software to the customer is possible,

even if all of the functionality has not been included. Customers are able to use

and gain value from the software earlier than is possible with a waterfall process.

 Incremental development in some form is now the most common approach for

the development of application systems. This approach can be either plan-driven, agile,

or, more usually, a mixture of these approaches. In a plan-driven approach, the system

increments are identified in advance; if an agile approach is adopted, the early

increments are identified but the development of later increments depends on progress

and customer priorities.

 There are two fundamental types of incremental development model:

1. Exploratory development استطلاعي/استكشافينموذج التطوير where the objective of

this model is to work with the customer to explore their requirements and deliver

a final system. The development starts with the parts of the system that are

understood. The system evolves by adding new features proposed by the

customer.

2. Throwaway prototyping نموذج اولي عديم الفائدة where the objective of the

development process model is to understand the customer's requirements and

hence develop a better requirements definition for the system. The prototype

ي راب
م الغ

لي كاظ
 Software Engineering 3 ع

concentrates on experimenting with the customer requirements that are poorly

understood.

 The advantage of a software process that is based on an incremental model is

that the specification can be developed incrementally.

 The incremental approach has two problems:

1. The process is not visible: Managers need regular deliverables to measure

progress. If systems are developed quickly, it is not cost-effective to produce

documents that reflect every version of the system.

2. Systems are often poorly structured: Continual change tends to corrupt the

software structure. Incorporating software changes becomes increasingly

difficult and costly.

 For small and medium-sized systems (up to 500,000 lines of code), the

incremental approach is the best approach to development. The problems of this

development model become particularly serious for large, complex, long- lifetime

systems, where different teams develop different parts of the system. It is difficult to

establish a stable system architecture using this approach, which makes it hard to

integrate contributions from the teams.

 For large systems, a mixed process that incorporates the best features of the

waterfall and the incremental development models. This may involve developing a

throwaway prototype using an incremental approach to resolve uncertainties/ambiguity

in the system specification. The software engineer can then re-implement the system

using a more structured approach. Parts of the system that are well understood can be

specified and developed using a waterfall-based process. Other parts of the system,

such as the user interface, which are difficult to specify in advance, should always be

developed using an exploratory programming approach.

ي راب
م الغ

لي كاظ
 Software Engineering 4 ع

Third. Reuse-oriented software engineering

 This model considered as the newest software process model. In the majority of

software projects, there is some software reuse. This often happens informally when

people working on the project know of designs or code that is similar to what is

required. They look for these, modify them as needed, and incorporate them into their

system.

Reuse-oriented approaches rely on a large base of reusable software components

and an integrating framework for the composition of these components. Sometimes,

these components are systems in their own right (COTS or commercial off-the-shelf

systems) that may provide specific functionality such as word processing or a

spreadsheet.

A general process model for reuse-based development is shown in previous

Figure. Although the initial requirements specification stage and the validation stage

are comparable with other software processes, the intermediate stages in a reuse-

oriented process are different. These stages are:

1. Component analysis: Given the requirements specification, a search is made

for components to implement that specification. Usually, there is no exact match

and the components that may be used only provide some of the functionality

required.

2. Requirements modification: During this stage, the requirements are analyzed

using information about the components that have been discovered. They are

then modified to reflect the available components. Where modifications are

ي راب
م الغ

لي كاظ
 Software Engineering 5 ع

impossible, the component analysis activity may be re-entered to search for

alternative solutions.

3. System design with reuse: During this phase, the framework of the system is

designed or an existing framework is reused. The designers take into account the

components that are reused and organize the framework to supplies for this.

Some new software may have to be designed if reusable components are not

available.

4. Development and integration: Software that cannot be externally obtained is

developed, and the components and COTS systems are integrated to create the

new system. System integration, in this model, may be part of the development

process rather than a separate activity.

 There are three types of software component that may be used in a reuse-

oriented process:

1. Web services that are developed according to service standards and which are

available for remote request.

2. Collections of objects that are developed as a package to be integrated with a

component framework such as .NET or J2EE.

3. Stand-alone software systems that are configured for use in a particular

environment.

 Reuse-oriented software engineering has the obvious advantage of reducing the

amount of software to be developed and so reducing cost and risks. It usually also leads

to faster delivery of the software. However, requirements compromises are

inevitable محتوم(sure to happen) and this may lead to a system that does not meet the

real needs of users. Furthermore, some control over the system evolution is lost as new

versions of the reusable components are not under the control of the organization using

them.

