
©Copyright Network Development Group 2013.

Chapter 4: Configuring the Shell

©Copyright Network Development Group 2013.

Shell Variables

• A name that holds a value
• Useful to store key system information as well

as shell data
• Can also be used to modify how specific

commands behave
• Examples:

NAME=Bob
LPDEST=hplaserjet

©Copyright Network Development Group 2013.

Shell Variables

• Variable names must begin with alpha or
underscore characters

• Remaining characters in variable name can be
alphanumeric and underscore characters

©Copyright Network Development Group 2013.

Local vs Environment Variable

• Local variables
- Only available to shell they are created in
- By convention, names are all lower case
- Can be exported for use by subshells
- Format: var=value

• Environment variables
- Passed into commands opened by the shell
- There are predefined environmental variables

(PATH, TZ, etc.)
- Format: var=value; export var

©Copyright Network Development Group 2013.

Ways to Make a Local Variable and
Environmental Variable

• Environment variables can also be set the
following ways
$export var=value

$declare -x var=value

$typeset -x var=value

©Copyright Network Development Group 2013.

Displaying Variables

• To display all variables, use the set command
• To display only environment variables, use

one of the following commands:
$env

$declare -x

$typeset -x

$export -p

• To display a variable:
$echo $var (i.e. $echo $PATH)

©Copyright Network Development Group 2013.

Setting/Unsetting Variables
Summary

• To set a local variable:
$var=value

• To set an environment variable, run two
commands:
$var=value

$export var

Or

$var=value; export var

• To unset a variable:
$unset var

©Copyright Network Development Group 2013.

The PATH Variables

• Used to search for commands that are
entered by the user so they can be executed

• Format: dir1:dir2:dir3
• Searches in order, dir1 first, dir2 second, etc.
• To set:

PATH=$PATH:/new/path

©Copyright Network Development Group 2013.

Initialization Files

• Contain a series of commands, settings, and
variables that establish the working
environment and preferences. For example:

-Default prompt
-Default printer
-Default list of directories to search for commands

• Two types:
- Global – affect all system users; located in /etc
- Local – user specific; located in a user’s home

directory and read after the global init files

©Copyright Network Development Group 2013.

Bash Startup

• The bash shell can be started in two different
ways:

- Login Shell: When a shell is provided to the user
during login

- Interactive Shell: When the kernel automatically
starts a new shell to run a program or when a
user starts a new shell manually. Also called an
Non-login Shell

©Copyright Network Development Group 2013.

Initialization File Summary

©Copyright Network Development Group 2013.

Which File Should You Edit?
File Purpose

/etc/profile This file can only be modified by the administrator and

will be executed by every user who logs in.

Administrators use this file to create key environment

variables, display messages to users as they log in and

set key system values.

~/.bash_profile Each user has their own .bash_profile file in their

home directory. The purpose for this file is the same as
the /etc/profile file, but having this file allows a user

to customize the shell to their own tastes. Normally

used to create customized environment variables.

~./bashrc Each user has their own .bashrc file in their home

directory. The purpose for this file is to generate things

that need to be created for each shell, such as local

variables and aliases.

/etc/bashrc This file may affect every user on the system. Only the
administrator can modify this file. Like the .bashrc file,

the purpose for this file is to generate things that need to

be created for each shell, such as local variables and

aliases.

©Copyright Network Development Group 2013.

Bash Exit Scripts

• When bash exists, it executes the following
files:
~/.bash_logout

/etc/bash_logout

• Useful to place commands to "clean up" your
account, like to delete old files and clear
screen

©Copyright Network Development Group 2013.

Command History

• Bash stores previous commands in memory
• You can re-execute these commands quickly
• When you log out, the commands are stored

into the ~/.bash_history file
• When bash starts, these commands are read

back into memory

©Copyright Network Development Group 2013.

Executing Previous Commands
(method 1)

Action Key Alternate Key

Combination

Previous history item Up arrow CTRL+p

Next history item Down arrow CTRL+n

Reverse history search CTRL+r

Beginning of line Home CTRL+a

End of line End CTRL+e

Delete current

character

Delete CTRL+d

Delete to left of cursor Backspace CTRL+x

Move cursor left Left arrow CTRL+b

Move cursor right Right arrow CTRL+f

©Copyright Network Development Group 2013.

Changing History Editing Keys

• History commands use emacs editor
commands by default.

• Can change to vi editor commands by
executing:
$set -o vi

• To make this change automatic, place the
following in the ~./inputrc file:
set editing-mode vi

set keymap vi

©Copyright Network Development Group 2013.

Using the history Command

• Displays a list of previously executed
commands:

$ history

1 ls

2 cd test

3 ls -l

4 history

• Common history command options:
Option Purpose

-c Clears the list

-r Read the history file and replace the current history

-w Write to the current history list to the history file

©Copyright Network Development Group 2013.

Configuring the history Command

• The HISTFILESIZE variable indicates how many
commands to store in the history file:

- HISTFILESIZE=500

• The HISTSIZE variable indicates how many
commands to store in memory:

- HISTSIZE=100

• The HISTIGNORE variable can be used to tell
bash to not store certain commands in the
history list:

- HISTIGNORE='ls*:cd*:history*:exit'

©Copyright Network Development Group 2013.

The HISTCONTROL variable

• The HISTCONTROL variable changes what is
stored in history:

- HISTCONTROL=ignoredups will prevent duplicate
commands that are executed consecutively

- HISTCONTROL=ignorespace will not store any
command that begins with a space

- HISTCONTROL=ignoreboth will not store
consecutive duplicates or any command that

begins with a space

©Copyright Network Development Group 2013.

Executing Previous Commands
(method 2)

• Alternative to using navigation (i.e. ↑,↓) or
Ctrl + key combinations (i.e. CTRL+p)

• The "!" is a special character to the bash shell
to indicate the execution of a command
within the history list:
History Command Meaning

!! Repeat the last command

!-4 Execute the command that was run four commands ago

!555 Execute command number 555

!ec Execute the last command that started with "ec"

!?grep Execute the last command that contained "grep"

