Elementary Number Theory Course I - High Diploma Students Asst. Prof. Dr. Ruma Kareem K. Ajeena ruma.usm@gmail.com

Lecture 3: The Euclidean Algorithm

2.1 The Euclidean algorithm

The Euclidean algorithm can be described as follows:
Theorem 2.1.1 (The Euclidean algorithm). Let a and b be two integers whose greatest common divisor is desired. Because $\operatorname{gcd}(|a|,|b|)=\operatorname{gcd}(a, b)$, with $\mathrm{a} \geq \mathrm{b}>0$. The first step is to apply the division algorithm to a and b to get

$$
\mathrm{a}=\mathrm{q}_{1} \mathrm{~b}+\mathrm{r}_{1}, \quad 0 \leq \mathrm{r}_{1}<\mathrm{b} .
$$

If it happens that $\mathrm{r}_{1}=0$, then $\mathrm{b} \mid \mathrm{a}$ and $\operatorname{gcd}(\mathrm{a}, \mathrm{b})=\mathrm{b}$.
When $r \neq 0$, divide b by r_{1} to produce integers q_{2} and r_{2} satisfying $b=q_{2} r_{1}$ $+r_{2}, \quad 0 \leq r_{2}<r_{1}$. If $r_{2}=0$, then we stop; otherwise, proceed as before to obtain $r_{1}=q_{3} r_{2}+r_{3}, 0 \leq r_{3}<r_{2}$ This division process continues until some zero remainder appears, say, at the ($n+1$)th stage where r_{n-1} is divided by r_{n} (a zero remainder occurs sooner or later because the decreasing sequence $b>r_{1}>r_{2}>\cdots \geq 0$ cannot contain more than b integers). The result is the following system of equations:

$$
\begin{gathered}
\mathrm{a}=\mathrm{q}_{1} \mathrm{~b}+\mathrm{r}_{1}, \quad 0<\mathrm{r}_{1}<\mathrm{b} \\
\mathrm{~b}=\mathrm{q}_{2} \mathrm{r}_{1}+\mathrm{r}_{2}, 0<\mathrm{r}_{2}<\mathrm{r}_{1} \\
\mathrm{r}_{1}=\mathrm{q}_{3} \mathrm{r}_{2}+\mathrm{r}_{3} 0<\mathrm{r}_{3}<\mathrm{r}_{2} \\
\ldots \\
\mathrm{r}_{\mathrm{n}-2}=\mathrm{q}_{\mathrm{n}} \mathrm{r}_{\mathrm{n}-1}+\mathrm{r}_{\mathrm{n}}, 0<\mathrm{r}_{\mathrm{n}}<\mathrm{r}_{\mathrm{n}-1} \\
\mathrm{r}_{\mathrm{n}-1}=\mathrm{q}_{\mathrm{n}+1} \mathrm{r}_{\mathrm{n}}+0
\end{gathered}
$$

With r_{n}, the last nonzero remainder that appears in this manner, is equal to $\operatorname{gcd}(\mathrm{a}, \mathrm{b})$.
This proof is based on the following lemma:
Lemma 2.1.1. If $a=q b+r$, then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.
Proof. If $d=\operatorname{gcd}(a, b)$, then the relations $d \mid a$ and $d \mid b$ together imply that $d \mid(a-q b)$, or $d \mid r$. Thus, d is a common divisor of both b and r. On the other hand, if c is an arbitrary common divisor of b and r, then $c \mid(q b+r)$, whence $\mathrm{c} \mid \mathrm{a}$. This makes c a common divisor of a and b , so that $\mathrm{c} \leq \mathrm{d}$. It now follows from the definition of $\operatorname{gcd}(b, r)$ that $d=\operatorname{gcd}(b, r)$.
Using the result of this lemma, we simply work down the displayed system of equations, obtaining

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}\left(b, r_{1}\right)=\cdots=\operatorname{gcd}\left(r_{n-1}, r_{n}\right)=\operatorname{gcd}\left(r_{n}, 0\right)=r_{n} .
$$

Theorem 2.1.1 asserts that $\operatorname{gcd}(a, b)$ can be expressed in the form $a x+b y$, but the proof of the theorem gives no hint as to how to determine the integers x and y . For this, we fall back on the Euclidean Algorithm. Starting with the next-to-last equation arising from the algorithm, we write $r_{n}=r_{n-2}$ $-\mathrm{q}_{\mathrm{n}} \mathrm{r}_{\mathrm{n}-1}$.
Now solve the preceding equation in the algorithm for $\mathrm{r}_{\mathrm{n}-1}$ and substitute to obtain

$$
r_{n}=r_{n-2}-q_{n}\left(r_{n-3}-q_{n-1} r_{n-2}\right)=\left(1+q_{n} q_{n-1}\right) r_{n-2}+\left(-q_{n}\right) r_{n-3} .
$$

This represents r_{n} as a linear combination of r_{n-2} and r_{n-3}. Continuing backward through the system of equations, we successively eliminate the remainders $r_{n-1}, r_{n-2}, \ldots, r_{2}, r_{1}$ until a stage is reached where $r_{n}=\operatorname{gcd}(a, b)$ is expressed as a linear combination of a and b.
Example 2.3. Let us see how the Euclidean Algorithm works in a concrete case by calculating, say, $\operatorname{gcd}(12378,3054)$. Applying the Division Algorithm produce the equations

$$
\begin{gathered}
12378=4 \cdot 3054+162 \\
3054=18 \cdot 162+138 \\
162=1 \cdot 138+24 \\
138=5 \cdot 24+18 \\
24=1 \cdot 18+6 \\
18=3 \cdot 6+0 .
\end{gathered}
$$

The last nonzero remainder appearing in these equations, namely, the integer 6, is the greatest common divisor of 12378 and 3054:
$6=\operatorname{gcd}(12378,3054)$.
To represent 6 as a linear combination of the integers 12378 and 3054, we start with the next-to-last of the displayed equations and successively eliminate the remainders
18, 24, 138, and 162:

$$
\begin{gathered}
6=24-18 \\
=24-(138-5 \cdot 24) \\
=6 \cdot 24-138 \\
=6(162-138)-138 \\
=6 \cdot 162-7 \cdot 138 \\
=6 \cdot 162-7(3054-18 \cdot 162) \\
=132 \cdot 162-7 \cdot 3054 \\
=132(12378-4 \cdot 3054)-7 \cdot 3054 \\
=132 \cdot 12378+(-535) 3054 .
\end{gathered}
$$

Thus, we have $6=\operatorname{gcd}(12378,3054)=12378 x+3054 y$, where $x=132$ and y $=-535$. Note that this is not the only way to express the integer 6 as a linear combination of 12378 and 3054; among other possibilities, we could add and subtract $3054 \cdot 12378$ to get

$$
6=(132+3054) 12378+(-535-12378) 3054=3186 \cdot 12378+(-12913) 3054 .
$$

Theorem 2.7. If $\mathrm{k}>0$, then $\operatorname{gcd}(\mathrm{ka}, \mathrm{kb})=\mathrm{k} \operatorname{gcd}(\mathrm{a}, \mathrm{b})$.
Proof. If each of the equations appearing in the Euclidean Algorithm for a and b is multiplied by k , we obtain

$$
\begin{gathered}
\mathrm{ak}=\mathrm{q}_{1}(\mathrm{bk})+\mathrm{r}_{1} \mathrm{k}, \quad 0<\mathrm{r}_{1} \mathrm{k}<\mathrm{bk} \\
\mathrm{bk}=\mathrm{q}_{2}\left(\mathrm{r}_{1} \mathrm{k}\right)+\mathrm{r}_{2} \mathrm{k}, \quad 0<\mathrm{r}_{2} \mathrm{k}<\mathrm{r}_{1} \mathrm{k} \\
\cdots \\
\cdots \\
\mathrm{r}_{\mathrm{n}-2} \mathrm{k}=\mathrm{q}_{\mathrm{n}}\left(\mathrm{r}_{\mathrm{n}-1} \mathrm{k}\right)+\mathrm{r}_{\mathrm{n}} \mathrm{k}, \quad 0<\mathrm{r}_{\mathrm{n}} \mathrm{k}<\mathrm{r}_{\mathrm{n}-1} \mathrm{k} \\
\mathrm{r}_{\mathrm{n}-1} \mathrm{k}=\mathrm{q}_{\mathrm{n}+1}\left(\mathrm{r}_{\mathrm{n}} \mathrm{k}\right)+0 .
\end{gathered}
$$

But this is clearly the Euclidean Algorithm applied to the integers ak and bk , so that their greatest common divisor is the last nonzero remainder $\mathrm{r}_{\mathrm{n}} \mathrm{k}$; that is,

$$
\operatorname{gcd}(\mathrm{ka}, \mathrm{~kb})=\mathrm{r}_{\mathrm{n}} \mathrm{k}=\mathrm{k} \operatorname{gcd}(\mathrm{a}, \mathrm{~b})
$$

as stated in the theorem.
Corollary. For any integer $\mathrm{k} \neq 0, \operatorname{gcd}(\mathrm{ka}, \mathrm{kb})=|\mathrm{k}| \operatorname{ged}(\mathrm{a}, \mathrm{b})$.
Proof. It suffices to consider the case in which $\mathrm{k}<0$. Then $-\mathrm{k}=|\mathrm{k}|>0$ and, by Theorem 2.7,

$$
\operatorname{gcd}(\mathrm{ak}, \mathrm{bk})=\operatorname{gcd}(-\mathrm{ak},-\mathrm{bk})=\operatorname{gcd}(\mathrm{a}|\mathrm{k}|, \mathrm{b}|\mathrm{k}|)=|\mathrm{k}| \operatorname{gcd}(\mathrm{a}, \mathrm{~b}) .
$$

An alternate proof of Theorem 2.7 runs very quickly as follows: $\operatorname{gcd}(\mathrm{ak}, \mathrm{bk})$ is the smallest positive integer of the form (ak) $\mathrm{x}+(\mathrm{bk}) \mathrm{y}$, which, in turn, is equal to k times the smallest positive integer of the form ax+by; the latter value is equal to $\mathrm{kgcd}(\mathrm{a}, \mathrm{b})$. By way of illustrating Theorem 2.7, we see that

$$
\operatorname{gcd}(12,30)=3 \operatorname{gcd}(4,10)=3 \cdot 2 \operatorname{gcd}(2,5)=6 \cdot 1=6 .
$$

There is a concept parallel to that of the greatest common divisor of two integers, known as their least common multiple; but we shall not have much occasion to make use of it. An integer c is said to be a common multiple of two nonzero integers a and b whenever $\mathrm{a} \mid \mathrm{c}$ and $\mathrm{b} \mid \mathrm{c}$. Evidently, zero is a common multiple of a and b. To see there exist common multiples that arenot trivial, just note that the products ab and $-(\mathrm{ab})$ are both common multiples of a and b, and one of these is positive. By the Well-Ordering Principle, the set of positive common multiples of a and b must contain a smallest integer; we call it the least common multiple of a and b. For the record, here is the official definition.
Definition 2.4. The least common multiple of two nonzero integers a and b , denoted by $\operatorname{lcm}(\mathrm{a}, \mathrm{b})$, is the positive integer m satisfying the following:
(a) $\mathrm{a} \mid \mathrm{m}$ and $\mathrm{b} \mid \mathrm{m}$.
(b) If $\mathrm{a} \mid \mathrm{c}$ and $\mathrm{b} \mid \mathrm{c}$, with $\mathrm{c}>0$, then $\mathrm{m} \leq \mathrm{c}$.

As an example, the positive common multiples of the integers-12 and 30 are $60,120,180, \ldots$, hence, $1 \mathrm{~cm}(-12,30)=60$. The following remark is clear from our discussion: given nonzero integers a and $b, \operatorname{lcm}(a, b)$ always exists and $\operatorname{lcm}(\mathrm{a}, \mathrm{b}) \leq|\mathrm{ab}|$. There is a relationship between the ideas of greatest
common divisor and least common multiple.
Theorem 2.8. For positive integers a and $b \operatorname{gcd}(a, b) \operatorname{lcm}(a, b)=a b$
Proof. Suppose $d=\operatorname{gcd}(a, b) . a=d r, b=d s$ for integers r and s. If $m=a b / d$, then $\mathrm{m}=\mathrm{as}=\mathrm{rb}$, the effect of which is to make m a (positive) common multiple of a and b. Now let c be any positive integer that is a common multiple of a and b; say, for definiteness, $c=a u=b v$.
Thus, there exist integers x and y satisfying $d=a x+b y$. In consequence, $\mathrm{c} / \mathrm{m}=\mathrm{cd} / \mathrm{ab}=\mathrm{c}(\mathrm{ax}+\mathrm{by}) / \mathrm{ab}=(\mathrm{c} / \mathrm{b}) \mathrm{x}+(\mathrm{c} / \mathrm{a}) \mathrm{y}=\mathrm{vx}+\mathrm{uy}$.
This equation states that $\mathrm{m} \mid \mathrm{c}$, allowing us to conclude that $\mathrm{m} \leq \mathrm{c}$. Thus, in accordance with Definition 2.4, $\mathrm{m}=\operatorname{lcm}(\mathrm{a}, \mathrm{b})$; that is, $\operatorname{lcm}(a, b)=a b / d=a b / \operatorname{gcd}(a, b)$
which is what we started out to prove.
Theorem 2.8 has a corollary that is worth a separate statement.
Corollary. For any choice of positive integers a and $b, l c m(a, b)=a b$ if and only if $\operatorname{gcd}(a, b)=1$.

When considering the positive integers 3054 and 12378, for instance, we found that $\operatorname{gcd}(3054,12378)=6$; whence, $\operatorname{lcm}(3054,12378)=3054 \cdot 12378$ $/ 6=6300402$.

