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Lecture 3: The Euclidean Algorithm

2.1 The Euclidean algorithm
The Euclidean algorithm can be described as follows:
Theorem 2.1.1 (The Euclidean algorithm). Let a and b be two integers
whose greatest common divisor is desired. Because gcd(|al,|b|) = gcd(a,b),
with a>b > 0. The first step is to apply the division algowithm to a and b to
get
a=Qib+r;, 0<ry<bh.
If it happens that r; =0, then bja and gcd(a,b)=b.
When r # 0, divide b by r; to produce integers'g, and r; satisfying b =g, r;
+ 1, 0<r <r. If r; =0, then wegstgpiotherwise, proceed as before to
obtain ry =qar; +rs, 0< r3 < r, This'@division process continues until some
zero remainder appears, say, at the (n+1)th stage where r,-; is divided by
rh (a zero remainder occurs sooper or later because the decreasing sequence
b >ry >r;> >0 cafinot contain more than b integers). The result is the
following system of equations:
asqib+ry, 0<r<b
b=q2r1 +r, 0<r<n
r=garz+r30<rs<r;

M2 =Onfn1+ T, 0<Ty<ryy

-1 =COn+1 'n + 0.
With ranthe last nonzero remainder that appears in this manner, is equal to
ged(@b).
This»proof is based on the following lemma:
Lemma 2.1.1. If a =gb+r, then gcd(a,b)=gcd(b,r).
Proof. If d =gcd(a,b), then the relations d|a and d|b together imply that
d|(a—gb), or d|r. Thus, d is a common divisor of both b and r. On the other
hand, if ¢ is an arbitrary common divisor of b and r, then c|(gb+r), whence
c|a. This makes ¢ a common divisor of a and b, so that ¢ <d. It now follows
from the definition of gcd(b,r) that d =gcd(b,r).
Using the result of this lemma, we simply work down the displayed system
of equations, obtaining
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gcd(a,b)=gcd(b, r1)=---=gcd(r,-1, rn)=gcd(r,,0)= rn.
Theorem 2.1.1 asserts that gcd(a,b) can be expressed in the form ax+by,
but the proof of the theorem gives no hint as to how to determine the
integers x and y. For this, we fall back on the Euclidean Algorithm. Starting
with the next-to-last equation arising from the algorithm, we write r, = r,,»
—(n M-1.
Now solve the preceding equation in the algorithm for r,—; and substitute
to obtain
M = o2 —qn(fn—3— qu-1 fn-2) =(1+0n Go-1) M2 +(—qn) 3.
This represents r, as a linear combination of r,, and r, ;. Continging
backward through the system of equations, we successively eliminate the
remainders r,-1, - ,..., 2,1 until a stage is reached where ¥,"=gcd(a,b) is
expressed as a linear combination of a and b.
Example 2.3. Let us see how the Euclidean Algorithm works imya concrete
case by calculating, say, gcd(12378, 3054). Applying,the Division
Algorithm produce the equations
12378=4-3054+162
3054=18-162+138
162=1-138+24
138=5-24+18
24=0"18+6
18=38¢6+0.
The last nonzero remainder_appearing in these equations, namely, the
integer 6, is the greatest €ommendivisor of 12378 and 3054:
6=0ed(12378,3054).
To represent 6 as a linear'eombination of the integers 12378 and 3054, we
start with the next-to-last of the displayed equations and successively
eliminate the remainders
18, 24, 138, @nd 162;
6=24-18
= 24—(138-5-24)
=6-24-138
=6(162—138)—138
=6-162—7-138
=6-162-7(3054-18-162)
=132-162—7-3054
=132(12378-4-3054)-7-3054
=132-12378 + (—535)3054.
Thus, we have 6=gcd(12378,3054)=12378x +3054y, where x =132and y
=—535. Note that this is not the only way to express the integer 6 as a linear
combination of 12378 and 3054; among other possibilities, we could add
and subtract 3054-12378 to get
6=(132+3054)12378+(—535—12378)3054 =3186-12378+(—12913)3054.
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Theorem 2.7. If k > 0, then gcd(ka,kb)=k gcd(a,b).
Proof. If each of the equations appearing in the Euclidean Algorithm for
a and b is multiplied by k, we obtain

ak =qi(bk)+r;k, 0<rk<bk

bk =qz(rik)+ r2k, 0 <rk <rk

2 K =Qn(ra1 K)+ ik, 0<rk<r,k
M1 K =Qn+1(rak)+0.
But this is clearly the Euclidean Algorithm applied to the integers @k’and
bk, so that their greatest common divisor is the last nonzero remainder r.K;
that is,
gcd(ka,kb)=r.k =k gcd(a,b)
as stated in the theorem.
Corollary. For any integer k #0, gcd(ka,kb)=[k|géd(a,b).
Proof. It suffices to consider the case in which k < 0.%Ch&m—k =|k| > 0
and, by Theorem 2.7,
ged(ak,bk)=gcd(—ak,—bk) =gcd(alkiblk[s|k|gcd(a,b).

An alternate proof of Theorem 2.7 puns wery quickly as follows:
gcd(ak,bk) is the smallest positive igtégerefthe form (ak)x +(bk)y, which,
In turn, is equal to k times the smallest positive integer of the form ax+by;
the latter value is equal to k ged(a;b). By way of illustrating Theorem 2.7,
we see that

gcd(12,30)=3gcd,10)=3-2 gcd(2,5)=6-1=6.
There is a concept parallel to*that of the greatest common divisor of two
integers, known as their least common multiple; but we shall not have
much occasion #o make use of it. An integer c is said to be a common
multiple of twe,nanzero integers a and b whenever ajc and b|c. Evidently,
zero is a commonwnultiple of a and b. To see there exist common multiples
that arespotitrivial, just note that the products ab and—(ab) are both common
multiplesief @ and b, and one of these is positive. By the Well-Ordering
Principlegthe set of positive common multiples of a and b must contain a
smallest integer; we call it the least common multiple of a and b. For the
record, here is the official definition.
Definition 2.4. The least common multiple of two nonzero integers a and
b, denoted by Icm(a,b), is the positive integer m satisfying the following:
(@) ajm and b|m.
(b) If alc and b|c, with ¢ > 0, then m <c.
As an example, the positive common multiples of the integers—12 and 30
are 60, 120, 180,..., hence, 1cm(—12,30)=60. The following remark is clear
from our discussion: given nonzero integers a and b, lcm(a,b) always exists
and lcm(a,b)<|ab|. There is a relationship between the ideas of greatest
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common divisor and least common multiple.

Theorem 2.8. For positive integers a and b gcd(a,b) Icm(a,b)=ab

Proof. Suppose d =gcd(a,b). a =dr, b =ds for integers r and s. If m =ab/d,
then m =as =rb, the effect of which is to make m a (positive) common
multiple of a and b. Now let ¢ be any positive integer that is a common
multiple of a and b; say, for definiteness, ¢ =au=bv.

Thus, there exist integers x and y satisfying d =ax+by. In consequence, Q’b

¢ /m = cd/ ab = c(ax+by)/ ab =(c/ b)x +(c/ a)y =vx+uy .
This equation states that m|c, allowing us to conclude that m <c. Thus, %
accordance with Definition 2.4, m =lcm(a,b); that is, °

Icm(a,b)=ab/ d = ab /gcd(a,b) Q
which is what we started out to prove.
Theorem 2.8 has a corollary that is worth a separate stateme
(a,b)=ab

Corollary. For any choice of positive integers a andg, lcm if and
only if gcd(a,b)=1. °

When considering the positive integers 3054 12378, for instance, we
found that gcd(3054, 12378)=6; whence, | 054,12378)= 305412378
/6 =6300402.
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