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2.1 The Euclidean algorithm 
The Euclidean algorithm can be described as follows:  

Theorem 2.1.1 (The Euclidean algorithm). Let a and b be two integers 

whose greatest common divisor is desired. Because gcd(|a|,|b|) = gcd(a,b), 

with a ≥ b > 0. The first step is to apply the division algorithm to a and b to 

get  

a =q1b+r1,      0≤ r1 < b. 

If it happens that r1 =0, then b|a and gcd(a,b)=b.  

When r ≠ 0, divide b by r1 to produce integers q2 and r2 satisfying b =q2 r1 

+ r2,   0≤ r2 < r1. If r2 =0, then we stop; otherwise, proceed as before to 

obtain r1 =q3r2 +r3, 0≤ r3 < r2 This division process continues until some 

zero remainder appears, say, at the (n+1)th stage where rn−1 is divided by 

rn (a zero remainder occurs sooner or later because the decreasing sequence 

b > r1 > r2 > ···≥0 cannot contain more than b integers). The result is the 

following system of equations:  

a =q1b+ r1,   0 < r1 < b 

b =q2 r1  + r2,  0 < r2 < r1 

r1 =q3r2 + r3 0 < r3 < r2 

. . . 

rn−2 =qn rn−1 + rn,  0 < rn < rn−1 

rn−1 =qn+1 rn + 0. 

 With rn, the last nonzero remainder that appears in this manner, is equal to 

gcd(a,b).  

This proof is based on the following lemma: 

Lemma 2.1.1. If a =qb+r, then gcd(a,b)=gcd(b,r). 

Proof. If d =gcd(a,b), then the relations d|a and d|b together imply that 

d|(a−qb), or d|r. Thus, d is a common divisor of both b and r. On the other 

hand, if c is an arbitrary common divisor of b and r, then c|(qb+r), whence 

c|a. This makes c a common divisor of a and b, so that c ≤d. It now follows 

from the definition of gcd(b,r) that d =gcd(b,r). 

Using the result of this lemma, we simply work down the displayed system 

of equations, obtaining  
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gcd(a,b)=gcd(b, r1)=···=gcd(rn−1, rn)=gcd(rn,0)= rn. 

Theorem 2.1.1 asserts that gcd(a,b) can be expressed in the form ax+by, 

but the proof of the theorem gives no hint as to how to determine the 

integers x and y. For this, we fall back on the Euclidean Algorithm. Starting 

with the next-to-last equation arising from the algorithm, we write rn = rn−2 

−qn rn−1. 

Now solve the preceding equation in the algorithm for rn−1 and substitute 

to obtain  

rn = rn−2 −qn(rn−3− qn−1 rn−2) =(1+qn qn−1) rn−2 +(−qn) rn−3. 

 This represents rn as a linear combination of rn−2 and rn−3. Continuing 

backward through the system of equations, we successively eliminate the 

remainders rn−1, rn−2 ,..., r2,r1 until a stage is reached where rn =gcd(a,b) is 

expressed as a linear combination of a and b. 

Example 2.3. Let us see how the Euclidean Algorithm works in a concrete 

case by calculating, say, gcd(12378, 3054). Applying the Division 

Algorithm produce the equations  

12378=4·3054+162 

3054=18·162+138 

162=1·138+24 

138=5·24+18 

24=1·18+6 

18=3·6+0. 

The last nonzero remainder appearing in these equations, namely, the 

integer 6, is the greatest common divisor of 12378 and 3054: 

6=gcd(12378,3054). 

To represent 6 as a linear combination of the integers 12378 and 3054, we 

start with the next-to-last of the displayed equations and successively 

eliminate the remainders 

18, 24, 138, and 162: 

                                                      6= 24−18 

= 24−(138−5·24) 

                                                       = 6·24−138 

= 6(162−138)−138 

                                                      = 6·162−7·138 

          = 6·162−7(3054−18·162) 

                                                =132·162−7·3054 

      =132(12378−4·3054)−7·3054 

                                                =132·12378 + (−535)3054. 

Thus, we have 6=gcd(12378,3054)=12378x +3054y, where x =132and y 

=−535.  Note that this is not the only way to express the integer 6 as a linear 

combination of 12378 and 3054; among other possibilities, we could add 

and subtract 3054·12378 to get  

6=(132+3054)12378+(−535−12378)3054 =3186·12378+(−12913)3054. 



 

13 

 

 

Theorem 2.7. If k > 0, then gcd(ka,kb)=k gcd(a,b). 

Proof. If each of the equations appearing in the Euclidean Algorithm for 

a and b is multiplied by k, we obtain  

ak =q1(bk)+r1k,    0 < r1k < bk 

bk =q2(r1k)+ r2k,   0 < r2k < r1k 

. . . 

rn−2 k =qn(rn−1 k)+ rnk,    0 < rnk < rn−1k 

                                       rn−1 k =qn+1(rnk)+0. 

But this is clearly the Euclidean Algorithm applied to the integers ak and 

bk, so that their greatest common divisor is the last nonzero remainder rnk; 

that is,  

gcd(ka,kb)=rnk =k gcd(a,b) 

as stated in the theorem. 

Corollary. For any integer k ≠0,  gcd(ka,kb)=|k|gcd(a,b).  

Proof. It suffices to consider the case in which k < 0. Then −k =|k| > 0 

and, by Theorem 2.7, 

gcd(ak,bk)=gcd(−ak,−bk) =gcd(a|k|,b|k|) =|k|gcd(a,b). 

 

 An alternate proof of Theorem 2.7 runs very quickly as follows: 

gcd(ak,bk) is the smallest positive integer of the form (ak)x +(bk)y, which, 

in turn, is equal to k times the smallest positive integer of the form ax+by; 

the latter value is equal to k gcd(a,b). By way of illustrating Theorem 2.7, 

we see that  

gcd(12,30)=3gcd(4,10)=3·2 gcd(2,5)=6·1=6. 

There is a concept parallel to that of the greatest common divisor of two 

integers, known as their least common multiple; but we shall not have 

much occasion to make use of it. An integer c is said to be a common 

multiple of two nonzero integers a and b whenever a|c and b|c. Evidently, 

zero is a common multiple of a and b. To see there exist common multiples 

that are not trivial, just note that the products ab and−(ab) are both common 

multiples of a and b, and one of these is positive. By the Well-Ordering 

Principle, the set of positive common multiples of a and b must contain a 

smallest integer; we call it the least common multiple of a and b. For the 

record, here is the official definition. 

Definition 2.4. The least common multiple of two nonzero integers a and 

b, denoted by lcm(a,b), is the positive integer m satisfying the following: 

(a) a|m and b|m.  

(b) If a|c and b|c, with c > 0, then m ≤c. 

As an example, the positive common multiples of the integers−12 and 30 

are 60, 120, 180,..., hence, 1cm(−12,30)=60. The following remark is clear 

from our discussion: given nonzero integers a and b, lcm(a,b) always exists 

and lcm(a,b)≤|ab|. There is a relationship between the ideas of greatest 
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common divisor and least common multiple.  

Theorem 2.8. For positive integers a and b gcd(a,b) lcm(a,b)=ab  

Proof. Suppose d =gcd(a,b).  a =dr, b =ds for integers r and s. If m =ab/d, 

then m =as =rb, the effect of which is to make m a (positive) common 

multiple of a and b. Now let c be any positive integer that is a common 

multiple of a and b; say, for definiteness, c =au=bv.  

Thus, there exist integers x and y satisfying d =ax+by. In consequence,  

c /m = cd/ ab = c(ax+by)/ ab =(c/ b)x +(c/ a)y =vx+uy .  

This equation states that m|c, allowing us to conclude that m ≤c. Thus, in 

accordance with Definition 2.4, m =lcm(a,b); that is,  

lcm(a,b)= ab/ d = ab /gcd(a,b) 

which is what we started out to prove. 

Theorem 2.8 has a corollary that is worth a separate statement. 

Corollary. For any choice of positive integers a and b, lcm(a,b)=ab if and 

only if gcd(a,b)=1.  

 

When considering the positive integers 3054 and 12378, for instance, we 

found that gcd(3054, 12378)=6; whence, lcm(3054,12378)= 3054·12378 

/6 =6300402. 

  

 


