3- REACTION TURBINES

The functioning of reaction turbines differs from impulse turbines in two aspects.

1. In the impulse turbine the potential energy available is completely converted to kinetic energy by the nozzles before the water enters the runner. The pressure in the runner is constant at atmospheric level. In the case of reaction turbine the potential energy is partly converted to kinetic energy in the stater guide blades. The remaining potential energy is gradually converted to kinetic energy and absorbed by the runner. The pressure inside the runner varies along the flow.

2. In the impulse turbine only a few buckets are engaged by the jet at a time. In the reaction turbine as it is fully flowing all blades or vanes are engaged by water at all the time. The other differences are that reaction turbines are well suited for low and medium heads (300 m to below) while impulse turbines are well suited for high heads above this value. Also due to the drop in pressure in the vane passages in the reaction turbine the relative velocity at outlet is higher compared to the value at inlet. In the case of impulse turbine there is no drop in pressure in the bucket passage and the relative velocity either decreases due to surface friction or remains constant. In the case of reaction turbine the flow area between two blades changes gradually to accommodate the change in static pressure. In the case of impulse turbine the speed ratio for best efficiency is fixed as about 0.46. As there is no such limitation, reaction turbines can be run at higher speeds.
3.1 Francis Turbines:

Francis turbine is a radial inward flow turbine and is the most popularly used one in the medium head range of 60 to 300 m. Francis turbine was first developed as a purely radial flow turbine by James B. Francis, an American engineer in 1849. But the design has gradually changed into a mixed flow turbine of today.

Figure 3-1 typical sectional and front view of a modern Francis turbine.
A sectional view of a typical Francis turbine of today is shown in figure 3.1. The main components are (i) The spiral casing (ii) Guide vanes (iii) Runner (iv) Draft tube and (v) Governor mechanism.

Most of the machines are of vertical shaft arrangement while some smaller units are of horizontal shaft type.

3.1.1 Spiral Casing

The spiral casing surrounds the runner completely. Its area of cross section decreases gradually around the circumference. This leads to uniform distribution of water all along the circumference of the runner. Water from the penstock pipes enters the spiral casing and is distributed uniformly to the guide blades placed on the periphery of a circle. The casing should be strong enough to withstand the high pressure.

3.1.2 Guide Blades

Water enters the runner through the guide blades along the circumference. The number of guide blades is generally fewer than the number of blades in the runner. These should also be not simple multiples of the runner blades. The guide blades in addition to guiding the water at the proper direction serve two important functions. The water entering the guide blades are imparted a tangential velocity by the drop in pressure in the passage of the water through the blades. The blade passages act as a nozzle in this spect. The guide blades rest on pivoted on a ring and can be rotated by the rotation of the ring, whose movement is controlled by the governor. In this way the area of blade passage is changed to vary the flow rate of water according to the load so that the speed can be maintained constant.
The variation of area between guide blades is illustrated in Figure 3.2.

Figure 3.2: Guide vane and guide wheel