Weeks 12 and 13
Interrupt Interface of the 8088 and
8086 Microprocessors

INTERRUPT INTERFACE

Interrupts provide a mechanism for quickly changing program environment.

The section of the program which the control is passed: Interrupt Service Routine,

ex: For printers it is the printer driver.

8088 and 8086 interrupts:

Main program

F'Z v External Hardware Interrupts Instructon N + 1
o v Nonmaskable Interrupt
z v Software Interrupts toth st sucton f
X v Internal Interrupts | - | o
v Reset .

Service routine
for interrupt 32

Return

Lower priority interrupts need to wait for the higher priority interrupts to be completed

Program control is passed

the service routine for

|

Interrupt 32 occurs during

Instruction N S ; execution of instruction N

in the main program

2

8088/8086 Interrupts

* Aninterrupt is an external event which informs the CPU that a
device needs service
* Inthe 8088 & 8086 there are are a total of 256 interrupts (or
interrupt types)
— INT 00
— INT 01
— INTFF
 When an interrupt is executed, the microprocessor automatically
saves the flags register (FR), the instruction pointer (IP) and the
code segment register (CS) on the stack and goes to a fixed
memory location.
* In 80x86, the memory location to which an interrupt goes is always
four times the value of the interrupt number

* INT 03h goes to 000Ch

Interrupt Service Routine

* For every interrupt, there must be a program associated with it
» This program is called an Interrupt Service Routine (ISR)
« Itis also called an interrupt handler

* When an interrupt occurs, CPU runs the interrupt handler but where
is the handler?

— In the interrupt Vector Table (IVT)

INT Number Physical Address Contains
INT 00 00000h IP0:CSO
INT 01 00004h IP1:CS1
INT 02 00008h IP2:CS2

INT FF 003FCh IP255:CS255

Interrupt Vector Table

 Interrupt vector table consists of 256 entries each
containing 4 bytes.

* Each entry contains the offset and the segment address of
the interrupt vector each 2 bytes long.

e Table starts at the memory address 00000H.

» First 32 vectors are spared for various microprocessor
operations.

* The rest 224 vectors are user definable.
* The lower the vector number, the higher the priority.

Interrupt Vector Table

First 1 K
memory

Memory
Address

Tabile
Entry

IFE

CS 255

IFC

IP 255

CS 32

P32

Csn

P 3

Css

Ps

CSa

P4

CsS3

P3

Cs2

P2

CS1

P

CS Value — Vector 0(CS0)

IP Value — Vector 0(IP 0)

-

2 Bytes - ——.-|

Vector
Detinition

Vector 2559

~

> User Availabl

Veclor 3 — Breakpoint

Vector 2 — NMI

Vector 1 — Single-Step

Vector 0 — Divide Error

*Contains 256 address pointers
(vectors)

*These pointers identify the
starting location of their service
routines in program memory.

*Held as firmware or loaded as
system initialization

Examples

...

- For example: vector 50: CS and IP?

' C8H :
000CS8 contains IP: and 000CA contains CS information

Physical Address 200 = (4 x 50) = 200 = 11001000 =

2
Interrupt Instructions
Mnemonic Meaning Format QOperation Flags Affected
CLI Clear interrupt flag CLI 0—=(IF) IF
STI Set interrupt flag STI 1 = (IF) IF
INT n Type n software interrupt | INT n (Flags) =~ ((SP) - 2) TF, IF
0-TF,IF
(CS)—+((SP) - 4)
(2+4+n)—=(CS)
(IP) = ((SP) — 6)
(4 +n)—>(P)
IRET Interrupt return IRET ((SP)) = (IP) All
((SP) + 2) = (CS)
((SP) + 4) — (Flags)
(SP) + 6 » (SP)
INTO Interrupt on overflow INTO INT 4 steps TF, IF
HLT Halt HLT Wait for an external None
interrupt or reset to oceur
WAIT Wait WAIT | Wait for TEST input to None

go active

Differences between INT and CALL

A CALL FAR instruction can jump any location within the

1 MB address range but INT nn goes to a fixed memory location
in the Interrupt VVector Table to get the address of the interrupt
service routine

A CALL FAR instruction is used by the programmer in the
sequence of instruction in the program but externally activated
hardware interrupt can come at any time

<+ A CALL FAR cannot be masked but INT nn in hardware can be
blocked.

A CALL FAR saves CS:IP but INT nn saves Flags and CS:IP

¢ At the end of the subroutine RET is used
whereas for Interrupt routine IRET should be the last statement

Interrupt Mechanisms, Types, and Priority

INTERRUPT TYPES SHOWN WITH DECREASING
PRIORITY ORDER

1.Reset

2.Internal interrupts and exceptions
3.Software interrupt
4.Nonmaskable interrupt
5.Hardware interrupt

All the interrupts are serviced on priority basis. The higher priority
interrupt is served first and an active lower priority interrupt service is
interrupted by a higher priority one. Lower priority interrupts will have to
wait until their turns come.

The section of program to which the control is passed called
Interrupt-service routine (ISR)

10

Interrupt instructions

* Interrupt enable flag (IF) causes external interrupts to be enabled.
e INT n initiates a vectored call of a subroutine.

 [NTO instruction should be used after each arithmethic instruction
where there is a possibility of an overflow.

» HLT waits for an interrupt to occur.
* WAIT waits for TEST input to go high.

11

The Operation of Real Mode Interrupt

. The contents of the FLAG REGISTERS are pushed onto the stack

2. Both the interrupt (IF) and (TF) flags are cleared. This disables the

INTR pin and the trap or single-step feature. (Depending on the
nature of the interrupt, a programmer can unmask the INTR pin by
the STI instruction)

. The contents of the code segment register (CS) is pushed onto the
stack.

. The contents of the instruction pointer (IP) is pushed onto the stack.

. The interrupt vector contents are fetched, and then placed into both
IP and CS so that the next instruction executes at the interrupt
service procedure addressed by the interrupt vector.

. While returning from the interrupt-service routine by the instruction
IRET, flags return to their state prior to the interrupt and and
operation restarts at the prior IP address.

12

INT 00 (divide error)

MOV AL,92
SUB CL, CL
DIV CL :; 92/0 undefined

; Also invoked if the quotient is too large to fit into the assigned register

MOV AX,0FFFh
MOV BL,2
DIV BL

; WRITE A DIVIDE ERROR ISR
Prompt db ‘Division by zero attempted$’

Diverr: PUSH DX
Mov ah,09h

Mov dx, offset prompt
int 21h

POP DX

13

INT 01 (Single Step)

% In executing a sequence of instructions, there is often a need to
examine the contents of the CPU’s registers and system
memory.

%k This is done by executing one instruction at a time and then
inspecting the registers and memory

*kThis is called the tracing or the single stepping
% TF must be set (D8 of the flag register)

PUSHF

POP AX

OR AX,0000000100000000B
PUSH AX

POPF

14

Other Interrupts

INT 02h

— Intel has set aside INT 02h for the NMI interrupt

— There is an NMI pin on the CPU

— If the NMI pin is activated by a H signal, the CPU jumps to
00008H to fetch the CS:IP of the ISR associated with NMI

INT 03h (breakpoint)
INT 04H (signed number overflow) or INTO

— If OF=0 goes to 00010h to get the address of the ISR
— Otherwise, it is equivalent to NOP

— D 0000:0000 0013

Example: Use debug dump command to see the IVT

15

External Hardware Interrupt Interface

8088
MPU

Vee
MN/MX

External
hardware
interrupt
interface
circuitry

8086

hardware
interrupt

Vee -
MN/MX

O INT,,
—OINT,,

F—OINT,,

—O INT

%55

——O0 INT,,
——O INT,,

—O INT,,

External

interface

circutry ‘

———0 INT

(b)

Minimum Mode

v'The interrupt circuitry must identify
which of the pending interrupts has
the highest priority.

v'Then passes its type number to the
MPU

v'The MPU samples the INTR at the
last clock period of each instruction
execution cycle. Its active high level
must be maintained.

v"When recognized INTRA
generated.

16

External hardware-interrupt Interface

* Minimum mode hardware-interrupt interface:

— 8088 samples INTR input during the last clock period of each
instruction execution cycle. INTR is a level triggered input;
therefore logic 1 input must be maintained there until it is
sampled. Moreover, it must be removed before it is sampled next
time. Otherwise, the same Interrupt Service is repeated twice.

— INTA goes to 0 in the first interrupt bus cycle to acknowledge
the interrupt after it was decided to respond to the interrupt.

— It goes to 0 again the second bus cycle too, to request for the
interrupt type number from the external device.

— The interrupt type number is read by the processor and the
corresponding int. CS and IP numbers are again read from the
memory.

17

External hardware-interrupt Sequence

- FIRST INTERAUPT ACKNOWLEDGE BUS CYCLE —=|= **SECOND INTERRUPT ACKNOWLEDGE BUS CYCLE =
T ‘ T2 T3 | Ta T | Tz T3] Ta
CLK ’ \ J \

« T\ S\ Ve

- \ / \ /

Figure 11-9 Interrupt-acknowledge bus cycle. (Reprinted by permission of
Intel Corporation. Copyright/Intel Corp. 1979)

18

Resident Programs

« Usually non-resident program is a file, loaded from disk by DOS.
Termination of such program is the passing control back to DOS.
DOS frees all memory, allocated for and by this program, and stays
idle to execute next program.

* Resident program passes control to DOS at the end of its execution,
but leaves itself in memory whole or partially.

e Such way of program termination was called TSR - Terminate-and-
Stay-Resident. So resident programs often called by this
abbreviations - TSR.

* For example, TSR can watch keypresses to get passwords, INT 13h
sectors operations to substitute info, INT 21h to watch and dispatch
file operations and so on.

TSR stays in memory to have some control over the processes.
Usually, TSRs takes INTerrupt vectors to its code, so, when interrupt
occurs, vector directs execution to TSR code.

19

Storing an Interrupt Vector in the Vector Table

In order to install an interrupt vector — sometimes called a hook — the
assembler must address absolute memory

INT 21h

/l\

Initialization

AH = _25h Read the current vector Terrrllnate and stay resident
AL = interrupt AH = 35h AH =31h

type number AL = interrupt type AL =00

DS:DX = address number PLYP DX = number of paragraphs

of new interrupt ES'BX = address to reserve for the program

procedure stored at vector

20

A virus!

-model tiny
-code
oro 100k

code_begin =

b Kty ax, 352 1h
int 21h
mosr word ptr [int21_addr]. b
mosF word ptr [Int2l_addr+02h], e=
mow ah, 25h
lea du, int21_~rirus
int 21h
woho ax, dx
int 27h
int2l wirus proc near
Cmp ah, 4bh
dne int2l1 exit
oW ax, 3dolh
int 21h
woho ax. bx
pu=h o=
pop cla
mowr ah, 40h
WO cw,. (code_end-code_begin)
lea dx, code_begin
int2l ewit:
Oeah
code_end:
int2z1l_ addr cld 7
wirus name db ' [Fact]
endp

Example-storing Interrupt Vector

Storing an Interrupt Vector in the Vector Table

In order to install an interrupt vector—sometimes called a hook—the assembler must address
absolute memory. Example 12—4 shows how a new vector is added to the interrupt vector table
by using the assembler and a DOS function call. Here, INT 21H function call number 25H ini-
tializes the interrupt vector. Notice that the first thing done in this procedure is to save the old in-
terrupt vector number by using DOS INT 21H function call number 35H to read the current
vector. See Appendix A for more detail on DOS INT 21H function calls.

EXAMPLE 12-4

.MCDEL TINY
.CCDE
;A program that installs NEW40 at INT 40H.

. BTARTUP

0100 EB 05 JMP START
0102 QQCO00QO0D0D OLD oD 2

;new interrupt procedure

0106 NEW40 PROC FAR

0106 CF IRET

0107 NEW40 ENDP

107 START:

0107 8BC C8 MOV AX,CS jget data segment

0109 B8E D8 MOV DS, AX

Example-storing Interrupt Vector

010B B4 35 MOV AH, 35H ;get old interrupt vector
010D BO 40 MOV AL, 40H

010F cCD 21 INT 21H

0111 89 1E 0102 R MOV WORD PTR OLD,BX

0115 8C 06 0104 R MOV WORD PTR OLD+2,ES

;install new interrupt vector 40H

0119 BaA 0106 R MOV DX, OFFSET NEW40

011c B4 25 MOV AH, 25H
011E BO 40 MOV AL, 40H
0120 CD 21 INT 21H

rleave NEW4AO in memory

0122 BA 0107 R MOV DX, OFFSET START

0125 Dl EA SHR DX, 1
0127 D1 EA SHR DX, 1
0129 D1 EA SHR DX, 1
012B D1 EA SHR DX, 1
012D 42 TNC DX

Ql2E B8 3100 MOV AX,3100H
0131 cCp 21 INT 21H

END

Interrupt Sequence
O Do N premewons I e B »The interrupt sequence
e ; begins when external device

— requests service by
— activating one of the

|5 — 1 | interrupt inputs.

, » The external device
evaluates the priority of this
sasm| | Interrupt

-1 | FINTR>1

— | »>80x86 checks for the
INTR at the last T state of
rorrsas the instruction

=1 | »Check for IF before

PAOCEDURE

] granting INTA

Interrupt Sequence
) N e I ey Y »>80x86 initiates the INTA
bus cycle. During T1 of the
. - first bus cycle ALE is sent
- J— and bus is at Z state and
S —-— | stays high for the bus cycle.

I »LOCK is provided in

— maxmode operation
sz | »During the second
—=a_] | interrupt acknowledge bus

— | cycle, external circuitry
gates one of the interrupts
rorrsa 20> FF onto data bus lines
-~ > Must be valid during T3

PAOCEDURE

] and T4 of second bus cycle

SR
Interrupt Sequence
| | »DT/R and DEN are at
g «w | | logic zero and 10/M is at 1.
nriivon ,
I > Next save the contents of
_______ I the flag register
E [T T »TF and IF are cleared
operations are performed. SOOI, >»CS and IP are pushed
*»The type number is P me B
internally multiplied by 4 /| e
«+The contents in this I »Upon return by IRET
location is fetched and rorwace
loaded into IP , »CS and IP are popped
“Then type number * 4 + rorruses > Flags are popped
2 content is loaded into I
J ZO

Interrupt Example

* An interrupting device interrupts the microprocessor each time the
interrupt request input has a transition from 0 to 1.

o 7415244 creates the interrupt type number 60H as a response to
INTA
e Assume:
— CS=DS=1000H
— SS=4000H
— Main program offset is 200H
— Count (counts the number of interrupts) offset is 100H
— Interrupt-service routine code segment is 2000H
— Interrupt-service routine code offset is 1000H
— Stack has an offset of 500H to the current stack segment
— Make a map of the memory space organisation

— Write a main program and a service routine to count the number of
positive interrupt transitions.

27

Interrupt Example

8088 Interrupting Device

74LS74

INTR Q CLKj«———Interrupt Request
CLR D—o+5V

! 74L.S244
8 1
AD; - AD, : 2Y, - 2y, 2A4 45V
1Y, - 1Y, 2A3
2A2
Interrupt Type Numbers

?il = 0110000,
1A3 AD? e ADO 3 QYQ 2?3 zy!

+5V _

—{MN/MX INTAp— 16 1A2 Tyq 1y3 1y, 1y

1A1

()
()

Interrupts the microprocessor each time the interrupt request signal has a
transition from 0> 1. The corresponding interrupt number generated by
the hardware in response to INTA is 60H

28

Memory organization

00000H

Intarrupt

Main Program SRVRTN
Set up data Save
segment, stack segment, processor
and stack pointer status
v
Set up the
inlerrupt lncrelment the
vector cour
Y 1
Enable Restore
interrupts P
status
, J
Return

Wait for
interrupt

(c)

00180H 1000H Type 60H Nacioe
00182H 2000H vector table
< <
1000H: 0000H
Program
data
1000H: 0100H } Count | area

ESET —= 1000H: 0200H

Main program
< <
INTR —= 2000H: 1000H
Interrupt
service
routine
< <
4000H: 0000H
it
4000H: 0500H TOS e

(b)

Program

;Main Program,

START:

HERE :
;Interrupt

SRVRTN:

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
STI
JMP

Service Routine,

START = 1000H:0200H

AX,1000H
DS, AX
AX,4000H
SS,AX
SP,0500H
AX,0000H
ES, AX
AX,0000H

[ES:180H] ,AX

AX,2000H

[ES:182H],AX

HERE

PUSH AX

MOV AL, [0100H]
INC AL

DAA

MOV [0100H], AL
POP AX

IRET

;Setup data segment at 1000H:0000H
;Setup stack segment at 4000H:0000H

;TOS is at 4000H;0500H
; Segment for interrupt vector table

;Service routine offset
;Service routine segment

;Enable interrupts
;Wait for interrupt

SRVRTN = 2000H:1000H

;Save register to be used
;Get the count

; Increment the count
;Decimal asdjust the count
;Save the updated count
;Restore the register used
;Return from the interrupt

(d)

Using hardware interrupt

Low data bu:

No connection

Low data bus

T4ALS244

Using Tri-state buffers to Input vector
DO
Dl
D2 .
D3
D4
D5
D6
D7 —
gt
Blo[4]2(19]17]5]3
111°12222
YYYYYYYY
12341234
1111222
AAAAAAA
1234123
1[1]1
INTA 2|a|6|8 3|5
T
1Hojojojojojofo
v|afr]efef1fa
2{1]|0

Cheapest Way (FF applied)
112|13]4(5|6|7]|8
i
Interrupt circuits
U3
L ; 2 4 =)
Y s R =
L;.: E" a | P — = v
(] T 31 1o PAG 1 k]
T4 E 0| ey [yt IETH] (-3
Txs 29 1 pan e (k]
L4 E | 10 P & T
7 o4l et e 3T)
KRG 5 RO 1=
— RD B0
P 36 1 urp =m
it s AT PR S0
wEamr B e I =
=3 25 RENE] P4 KL DAY
: cs s
EAATR I_ﬁ_ AR et
FE 7
B E
R, Uz =]
TFWT l I Py ele
L 2 |r.;'1 g], _::!g 2 -—51'—9— giaw Keybaard
A oy oo prr =l i
e, Ala PO fe———
% = | ER [y S
i L& LE RN =
ad &l i : o7 B2 PCT [0
A 12 T
~G 5 :g p=] HASEA 2
A Ll
1604
a1 -
Al :
AL
ala - :
Al
[T
[
R ENEEEE
rErEr T
L& ® o400 34 THALE244
L1 112222
AsAAARAR 12
L2331 238 G
e tafifs TP
[Ty Z0% (_I_ ﬁ_ L|Sga | s IR

el e
10E

AURE 1212 An 82055 interfaced to a keyboard from the microprocesser system using interrupt vector ADH.

Description

8255 is decoded at 0500h, 0502h, 0504h, and 0506h
8255 is operated at Mode 1 (strobed input) BO CONTROL WORD

Whenever a key is typed , the INTR output (PC3) becomes a logic 1
and requests an interrupt thru the INTR pin on the microprocessor

The INTR remains high until the ASCII data are read form port A.

In other words, every time a key is typed the 8255 requests a type
40h interrupt thru the INTR pin

The DAV signal from the keyboard causes data to be latched into
port A and causes INTR to become a logic 1

Data are input from the keyboard and then stored in the FIFO (first
in first out) buffer

FIFO in our example is 256 bytes
The procedure first checks to see whether the FIFO is full.

A full condition is indicated when the input pointer (INP) is one byte
below the output pointer (OUTP)

33

Remembering Mode 1 with Interrupts this time

'_,__——'____
_
el K Port A with
Port A Input
INTEA 4 LU Handshake Signals Control Word -- Mode 1 Input
L AL L o7 D& D5 D4 D3 D2 D1 DO
C5 |——> IBFA TaJo 1 1[wf[1]1]x
10 Mode —j— L— Port B Input
Port A Moda 1 L ———— Port 8 Mode 1
PCET
3 |——> INTRA Port A Input A
0 = Output
I
Port B with
INTEB
—— ITEN Handshaks Signals
et stk Stone Status Word - Mods 1 Input
9 j————3> IBFA
D D6 D
[uo] vo |
= nTRe INTEA is eontrolled by PC4 in BSR mods.
< Pon B Input INTEB is controlled by PC2 in BSR mode.
—d RD —
PCE,7 |—> 10

IBF Fi
INTR r}r N —
&b ' \.Z_f?
hmhn?dnplwﬂ < 2 34

Example: “Read from the Keyboard routine” into FIFO

; interrupt service routine to read a key from the keyboard
PORTA EQU 500h
CNTR EQU 506h

FIFO DB 256 DUP (?)
INP DW ? ; SET AS OFFSET FIFO IN MAIN PROG
OUTP DW ? ; SET AS OFFSET FIFO IN MAIN PROG
KEY: PROC FAR ;USES AX BX DI DX
MOV BX, INP
MOV DI, OUTP
INC BL
CMP BX, DI ;test for queue full
JE FULL ; if queue is full
DEC BL
MOV DX, PORTA
IN AL,DX ; read the key
MOV [BX], AL
INC WORD PTR INP
JMP DONE
FULL: MOV AL,8 ;DISABLE THE INTERRUPT
MOV DX, CNTR
ouT DX,AL
DONE: IRET
KEY ENDP

35

Example contd: “Read from the FIFO into AH”

READ: PROC FARUSES BXDIDX
EMPTY: MOV BX, INP

MOV DI, OUTP

CMP BX,DI

JE EMPTY

MOV AH, CS:DI

MOV AL,9; enable 8255 intEa

MOV DX, CNTR

ouT DX,AL
INC BYTE PTR CS:OUTP
RET

READ : ENDP

36

Multiple Interrupts - Another Interrupt Structure

INTA

INTR

Laow data bus

O D 0 -y

(3

bl s [=
Wr— e g —

L

uz

e

TAALS30

| il —

1

2|9| 7|53

1°2821272 x

YYY¥¥YY Ul

41234 TAALS 244

| e e e gy

AAAAN 12

41234 GG

1{1]11 111 - ¥CC
Bl1]3[5]7 @ s
HOK
IRD
IR1
TR2
IR3
IR4
13
+ = IRO

FIGURE 12-13 Expanding the INTR inpul from one to seven intarrupt request lines.

37

Multiple Interrupts - Interrupt Structures

DO
D1
D2 _ -
D3 1
D4 - - I — Low data bus
o |
D7 11
1 | 11 J
Bi6]4]219]7|5]3
[1T1112222)
YYYYYYYY)
12341234 | 74ALS244
1112222 ‘
| AAAAAAAA 12
L 12341234 GG|
I Nk 1{ vee
INTA L 416|8[1[3|5|7 19
| % 10K
| |
1L
11
v fHH K
INTR ii 4 11 IR2
5 1 IR3
T4ALS30 (6 IR4
11 IRS
i S SE— _ IRe
=75 [[=73) 164 1Rz 1Rz 1R7 IR0 Vector
1 1 1 1 1 1 0 FEH
1 1 1 1 1 0 1 FOH
1 1 1 1 Q 1 1 FBH
1 1 1 0 1 1 1 F7H
1 1 0 1 1 1 1 EFH
1 o 1 1 1 1 1 OFH
o 1 1 1 1 1 1 BFH

»This drawing can
accommodate up to 7
interrupts.

»>If any of the IR inputs
becomes a logic 0, then the
output of the NAND gate
goes to logic 1 and requests
an interrupt through the

INTR input.

»The PRIORITY among the
interrupts is resolved using
software techniques.

Ex: IR1 and IRO active
creates FCH (252). At this
location IR0 can be placed to
resolve.

Operation

« If any of the IR inputs becomes a logic 0O, then the output
of the NAND gate goes to logic 1 and requests an interrupt
through the INTR input

» Single interrupt request
 What if IRO and IR1 are active at the same time?

* The interrupt vector is generated is FCh

« If the IRO input is to have higher priority, the vector
address for IR0 is stored at vector location FCh

» The entire top half of the vector table and its 128
interrupt vectors must be used to accommodate all
possible conditions

» This seems wasteful but it may be cost effective in
simple systems

Multiple Interrupts Using Priority Encoder

Or you may use a k$$ 33 3os
priority encoder! 1

8-t0-3
Priority Encoder
+5V *
16} Is = 16 8=
Vee GND Voo GND
Tri-State

Buffer
T4LS366

e
"dl—l‘
S = N W s L O

INTR

40

8255 Programmable Interrupt Controller

8259 Programmable Interrupt Controller

*The 8259 programmable interrupt controller (PIC) adds eight
vectored priority encoded interrupts to the microprocessor.

*This controller can be expanded to accept up to 64 interrupt
requests. This requires a master 8259 and eight 8259 slaves.
*\ector an Interrupt request anywhere in the memory map.
*Resolve eight levels of interrupt priorities in a variety of modes,
such as fully nested mode, automatic rotation mode, and specific
rotation mode.

*Mask each of the interrupt request individually

*Read the status of the pending interrupts, in-service interrupts
and masked interrupts.

42

Block Diagram

82C59A (PDIP, CERDIP, SOIC)
TOP VIEW

- E L E Vec PIN DESCRIPTION
ﬁE 27] A0 O - 00 Data Bus (Bidirechional)
o3 28] INTA RD Read Input
o7 [4] 78] IR7 —_—
os 5] 73] IR6 WR Write Input
ps [€] 23] IRS Al Command Select Address
o4 7] = TS Chip Select
o3 [E] 21 1IR3
pz [2] 70] IR2 CAS2-CASO0 Cascade Lines
D1 [ig] 19] 1R1 SF/EN Slave Program Input Enable
oo E 18] IR0

caso[iZ] N INT Interrupt Output

cas 1 [i3] [16] SF/EN INTA Interrupt Acknowledge Input

ono [E]cas2 IRD - RS Interrupt Request Inputs

43

82C59A Programmable Interrupt Controller

* Block diagram of 82C59A includes 8 blocks
— 8259 is treated by the host processor as a peripheral device.
— 8259 is configured by the host pocessor to select functions.

— Data bus buffer and read-write logic: are used to configure the

internal registers of the chip.
* A0 address selects different command words within the 8259

INTA INT
f } 1

CONTROL LOGIC

I 1 1
j— IR0

READ/ l— IR1
WRITE IN - INTERRUPT p+— IR2
PRIORITY
RESOLVER

LOGIC SERVICE REQUEST = IR3
1 1 i

DATA
BUS
BUFFER

S S

REG REG fe—IR4
(ISR) (IRR}) fe—IR5
fe— IRG
— IR7

CASCADE
BUFFER

COMPARATOR

INTERRUPT MASK REG
(IMR)

o

INTERNAL BUS

44

82C59A Programmable Interrupt Controller

— Control Logic INT and INTA™ ared used as the handshaking interface.

. INT output connects to the INTR pin of the master and is connected to a
master IR pin on a slave. INTA is sent as a reply.

. In a system with master and slaves, only the master INTA ~ signal is
connected.

— Interrupt Registers and Priority Resolver: Interrupt inputs IR, to IR,
can be configured as either level-sensitive or edge-triggered inputs.
Edge-triggered inputs become active on 0 to 1 transitions.

1. Interrupt request register (IRR): is used to indicate all interrupt
levels requesting service.

2. In service register (ISR): is used to store all interrupt levels which are
currently being serviced.

3. Interrupt mask register (IMR): is used to enable or mask out the
individual interrupt inputs through bits MO to M7. 0= enable, 1=
masked out.

4. Priority resolver: This block determines the priorities of the bits set in
the IRR. The highest priority is selected and strobed into the
corresponding bit of the ISR during the INTA sequence.

— The priority resolver examines these 3 registers and determines
whether INT should be sent to the MPU

45

82C59A Programmable Interrupt Controller

— Cascade-buffer comparator: Sends the address of the
selected chip to the slaves in the master mode and
decodes the status indicated by the master to find own
address to respond.

— Cascade interface CAS,-CAS, and SP /EN :

« Cascade interface CAS,-CAS, carry the address of the slave to be
serviced.

e SP /JEN :=1 selects the chip as the master in cascade mode
:=0 selects the chip as the slave in cascade mode

‘in single mode it becomes the enable output for
the data transiver

46

Interrupt Sequence

e
1) One or more of the INTERRUPT REQUEST lines (IRO - IR7) are
raised high, setting the corresponding IRR bit(s).

2) The 82C59A evaluates those requests in the priority resolver with
the IMR and ISR, resolves the priority and sends an interrupt (INT)
to the CPU, if appropriate.

3) The CPU acknowledges the INT and responds with first INTA pulse.

4) During this INTA pulse, the appropriate ISR bit is set and the
corresponding bit in the IRR is reset (to remove request). The
82C59A does not drive the data bus during the first INTA pulse.

5) The 80C86/88/286 CPU will initiate a second INTA pulse. The
82C59A outputs the 8-bit pointer onto the data bus to be read by the
CPU.

6) This completes the interrupt cycle. In the Automatic End of
Interrupt (AEOI) mode, the ISR bit is reset at the end of the second
INTA pulse. Otherwise, the ISR bit remains set until an appropriate
End of Interrupt (EOI) command is issued at the end of the interrupt
subroutine.

47

8259 System Bus

) ADDRESS BUS {16) <

j CONTROL BUS <

wor | vow | wT | WTE

j DATA BUS (8) q

g 1
3 Ag D7 - Og RO INT INTA
CASCADE «—l Cas D
LINES ~|:-1—|- CAaSq BE2C39A
T CAS2 IRG IRG IRG IRG IRG IRG IRG IRG
EEER T] 5 4 3 2 1 0

SLAVE PROGRAM/ INTERRUPT
EMAELE BUFFER REGQUESTS

82C5%A STANDARD SYSTEM BUS INTERFACE
48

Content of the Interrupt Vector Byte

CONTENT OF INTERRUPT VECTOR BYTE FOR
80C86/88/286 SYSTEM MODE

D7 D6 D5 D4 D3 D2 D1 Do
IR7 T7 TG Th T4 T3 1 1 1

IRG T7 TE T5 T4 T3 1 1 0
IR5 T7 TG Th T4 T3 1 0 1
IR4 T7 TE T5 T4 T3 1 0 0
IR3 T7 TG Th T4 T3 0 1 1
IR2 7 TG T5 T4 T3 0 1 0
IR1 T7 TG Th T4 T3 0 0 1
IR0 7 TG TS T4 T3 0 0 0

49
Two controllers wired in cascade
oje——— B0 T On the PC, the controller is
RQ? Casate operated
] e com in the fully nested mode

ST - Lowest numbered IRQ input

has highest priority

will not be acknowledged

IR0 | 4———— IRQB .
drm R B have been serviced
IR2 j————— IRQ!0
1IR3 |4——— 1RQ11
IRQI12
IRQ13 Coprocessor
{RQ14 Hard disk controller

SELAO-Al d IR7 | 4———— IRQIS

8259A-Slave

Interrupts of a lower priority

until the higher priority interrupts

50

Fully Nested Mode

* It prioritizes the IR inputs such that IRO has highest priority and IR7
has lowest priority

» This priority structure extends to interrupts currently in service as
well as simultaneous interrupt requests

* For example, if an interrupt on IR3 is being serviced (IS3=1) and a
request occurs on IR2, the controller will issue an interrupt request
because IR2 has higher priority.

» Butif an IR4 is received (or any interrupt higher than IR2), the
controller will not issue the request

* Note however that the IR2 request will not be acknowledged unless
the processor has set IF within the IR3 service routine

* In all operating modes, the IS bit corresponding to the active routine
must be reset to allow other lower priority interrupts to be
acknowledged

» This can be done by outputting manually a special nonspecific EOI
instruction to the controller just before IRET

» Alternatively, the controller can be programmed to perform this
nonspecific EOl automatically when the second INTA pulse occurs

51

Interrupt Process Fully Nested Mode

Main Program

E IR, Printer Service Routine
s
® ——
IR,
Interrupt
IR; Service Routine
El
. =

FIGURE 15.32

Interriimt Proceass: Fuilhr Nastad Mada

Interrupt IR,

52

End of Interrupt

»The In Service (IS) bit can be reset automatically following the trailing edge
of the last in sequence INTA pulse (when AEOI bitin ICW4 is 1) or by a
command word that must be issued to the 8259 before returning from a service
routine (EOI command).

»An EOI command must be issued twice in the Cascade mode, once for the
master and once for the corresponding slave.

» There are two forms of (non-automatic) EOl command:

v'Specific: When there is a mode which may disturb the fully nested
structure, the 8259 may not determine the last level acknowledged. In
this case a specific EOI must be issued, which includes the IS level to
be reset. (OCW2)

v'"Non Specific: When a Non Specific EOI issued the 8259 will
automatically reset the highest IS bit of those that are set, since in the
fully nested mode the highest level was necessarily the last level
acknowledged and serviced. (preserve the nested structure)

+¢+A non Specific EOI can be also issued at OCW?2. -

Initialization Sequence

Two types of command words are

1cw1 provided to program the 8259:
! 1) The initialization command words
Icwz (|CW)

2) The operational command words
(OCW)

MO (SNGL = 1)

e Writing ICW1, clears ISR and
IMR

e Also Special Masked mode SMM
in OCWa3, IRR in OCW3 and EOI
in OCW?2 are cleared to logic 0.

YES (SNGL = 0))

ICwW3

1S 1ICwW4
NEEDED

* Fully Nested Mode is entered.
 ICW3and ICW4 are optional

YES (IC4 = 1)

. * Itisnot possible to modify just one

READY TO ACCEPT
INTERRUPT REQUESTS

ICW. Whole ICW sequence must
be repeated

54

ICW1

ICW1
Ag Dy Dg Ds Dy D3 Dz D4 Dy
0 Az Ag Asg 1 LTIM ADI SNGL 14

1= 1CW4 neaded

0 = No ICW4 needed
1= Single

0 = Cascade Mode

= CALL address interval
1 = Interval of 4
0 = Interval of 8

1 = Level friggered mode
0 = Edge triggered mode
A

7 - Ay of Interrupt vector address

(MCS-B0/85 mode only)

What value should be written to ICW1 in order to configure the
8259 so that ICW4 needed, the system is going to use multiple

8259s and its inputs are level sensitive?

00011001b = 19h

55

|- s MOoae ony)
ICwz2
Ag D7 Dg Ds Dg D3 Dz D4 Dg
" Aqq Aq3 Mgz Aqq Aqg Mg Mg
Ty Ty Ty T4 Ty

| - P45 - Ag of interrupt vactor address

(MCSB0BS mode)

Ty - Ty of interrupt vector address
(BOBG/B0BE maode)

What should be programmed into register ICW2 if type number output
on the bus is to range from FOh to F7h

11110000b = FOh

Suppose IR6 is set to generate the value of 6E. Generate the addresses for

the other interrupts.

.............. IRZ.=6F.... IR3 = 6B
N [- (-l =S— IR2 = 6A
IR5 = 6D IRL = 69

IR4 = 6C IRO = 68

56

Master Slave Configuration

CAS bus
8086 l 1 E f
- i IR, [« ‘ L
_ | R | 82C59A INT 82C59A
Ve#—— MN/MX) o N Slave [« IR -IR, Slave
g ’ <+ IR,-IR 8

DT/R Address) 6 Y B
5 latch

T4F373

Addr

I =]

4 v
G DI \'/

! S vd [
Data

bus ! Data bus _— — 2
transceiver
74F245
(b)
57

Master Slave Configuration

ADDRESS BUS 1181 |

L l

CONTROL BUS

S R S—

DATA BUS I®)

NI W SS—

(=1 1-]

CAS Y 82C59A

CAS 2
| |SPETM? M6 WS w4 M3 M2 M1 MO

Ui

INTERRUPT REQUESTS

v"When slave signals the master that an interrupt is active the master determines
whether or not its priority is higher than that of any already active interrupt.

vIf the new interrupt is of higher priority the master controller switches INTR to
logic 1
58

Master Slave Configuration

C ADDAESS BUS 18] |
T 1 [I
| |
| 1 | |
{ COMTROL BUS |
| T | T T T T §wrneg
L1 [| I] 1 I |
(. DATA BUS (B T
T 1 T T T T T
7] T YT
e e i _ : ‘]
——{i—g—+-~ -+ +— 1+ u EREREE
- - |— 4 — — -+ |-— | | 1 -
T et Uf
| ' S— ' b 11 || '
{ O t N1 l Q) {}1 (1] 3 4 ' |
& A, D07 WTA INT (11 | €5 A, D07 WA INT (- €S A, o007 WNTA INT
CASOD -—-4—9——-1—‘ CAS O |-t caso
| 1 1
B2C50A CAS | B2C59A P 4 B2C59A
SLAVE A R SLAVEB | Chs MASTER
CAS 7 j=—dtt CAS 7 | CAS2
EPEN? & 5 4 3 2 1 0 | EBER? & 5 4 3 2 1 0 EE.ERMT M6 WS Mé M3 M2 W1 WO
ASEREREE ARERERER ABRRRREE
owo | | | ‘ j ono | ! | | : vee ;| | aEE |
| | I I [
r . 5 4 3 I [] | b) & 5 a 3 F 2 | [-] | I] 12 : ;
T

v'This signals MPU that external device needs to be serviced. If IF is set. As the first INTA is

INTERRUPT REQUESTS

sent out the master is signaled to output the 3 bit cascade code of the slave device whose whose
interrupt request is being acknowledged on the CAS bus. All slaves read this code and compare

internally

v'The slave corresponding to the code is signaled to output the type number of its highest
priority active interrupt on the data bus during the second INTA cycle.

59

ICW3

ICW3 (MASTER DEVICE)

Ag Dy Dg Ds Dg D3 Dz Dy Dy
1 S_‘,' SB 35 54 33 32 31 SD
I I I I I I I I I
ICW3 (SLAVE DEVICE)
Ag Dy Dg Ds Dg D3 Dz Dy Dy
1 0 0] o o IDg D4 IDg

1 = IR input has a slave
0 = IR input does not have a slave

SLAVE ID (NOTE)

.

ofp1j2)3j4]s5gs6}v
Op1]o1joj1jopq1
oot prqojogp1gt
gpojojogrrgp1g1

Q) Suppose we have two slaves connected to a master
using IR0 and IR1.

A) The master is programmed with an ICW3 of 03h,
one slave is programmed with an ICW3 of 00h and
the other with an ICW3 of 01h.

60

Example Master-Slave

IR, INT,
i:: v Any requests on interrupt lines INT7
8259 . through INT14 will cause IR6 to be
Master ~r, activated on the MASTER.
""" ¥ The MASTER will then examine the bit 6
5V — AW - wr, INits ICW3 to see if it is set.
e P v If so it will output the cascade number of
the SLAVE on CASO through CAS2.
v These cascade bits are received by the
J SLAVE device which examines its ICW3 to
1 vy see if there is a match..
CAS
INT o INT, v The programmer must have programmed
110 into the SLAVE’S ICW3. If there is a
. | match between the cascade number and
o — ICW3, the SLAVE device will output the
I appropriate vector number during the
I second INTA pulse.
N o SP/EN IR, INT,,
& 61
ICW4
ICw4
Ay D7 Dg Ds Dy D3 Dg D4 Dg
1 0 0 0 SFNM BUF WS AECI uFM
: L 1=
AEOI mode requires no 0 = MCS-80/85 mode
commands. During the second i ——— 1=AuoEOl
INTA the ISR bit is reset. The - Non buffered mode™
major drawback with this mode - Buffered mode slave

is that the ISR doesn’t have info
on which IR is served. Thus any
IR with any priority can now
Interrupt service routine.

_15>¢

- Buffered mode master

» 1= Special fully nested moded

0 = Not spec

fully nested mode

Masks and Other Mode selection

sInterrupt Masks

sEach Interrupt request can be masked individually
by the IMR programmed through OCW1. Each bit in
the IMR masks one interrupt channel if it is set (1).
Bit 0 masks IR0, Bit 1 masks IR1 and so forth,
Masking an IR channel does not affect the other
channels operation.

63

Special Fully Nested Mode

— Used in the case of a large system where cascading
Is used, and the priority has to be conserved within
each slave.

— This mode is similar to the normal nested mode with
the following:

* When an interrupt request from a certain slave is in service
this slave is not locked out from the master’s priority logic
and further interrupt requests from higher priority IR’s within
the slave will be recognized by the master and will initiate
interrupts to the processor.

» When exiting the ISR the software has to check whether the
interrupt is the only interrupt that is serviced from the SLAVE.
This is done by sending an EOI command and check the In
service register in the SLAVE. If it is the only one, a non
specific EOI has to be sent to the MASTER, if it is not empty
no action performed.

64

Automatic Rotation

—Several interrupt sources all of equal priority

—When the EOI is issued the IS bit is reset and then assigned
the lowest priority

—The priority of of other inputs rotate accordingly

IS7 IS8 185 1S4 133 182 181 180

IS7 IS8 IS5 IS4 (S3 182 IS 180 H[*Iolo]ﬂo]o[o]
(e[el Tolo[e]o]
“IS" Status 231468-18 “IS" Status 231488-20
Lowes! Priofty Mighes! Prierity : Highest Priority L;u Prionty
EN N ER NN E3 i 0 S | 0 B L KZ 8 N KX 63
Priority Status 231468-19 | Priority Status 231468-21

65

Automatic Rotation

interrupt requests
arrive on IR4 and IR6

Rotate on nonspecific
EOI (reset IS4)

(a)

EOI command always resets
the highest ISR bit (bit of
highest priority)

Use automatic rotating

mode to clear the IS bit as soon
as it is acknowledged

Specific Rotation

* The programmer can change priorities by
programming the bottom priority and thus
fixing all other priorities
(for ex: if IR5 is programmed as the bottom
priority device, then IR6 will have the highest
one)

* The set priority command is issued in OCW?2
where R=1, SL=1, LO-L2 is the binary priority
level code of the bottom priority device)

67

OCW1 - OCW2

OCWT1 is used to access the contents of the IMR. A READ operation can be performed
to the IMR to determine the present setting of the mask. Write operations can be
performed to mask or unmask certain bits.

ocwi1
Ag D7 Dg Ds Dy D3 Da D4 Do
1 M7 Mg Mg My M M My Mg
| Intermupt Mask
1 = Mask set
(} = Mask reset
ocwz
Ag Dy Dg D5 Dy Dy D2 Dy Dg
0 R SL EQI] 0 Ly Ly Lg IR LEVEL TO BE
ACTED UPON
L Ol1g213j4ps)6]7
gjpt1gogprjogpt1jol
gjog1gtjoqogpi|1
oot Mon-specific EQl command ogjogojoigrgpr|
of1]1 t Specific EOI command } LT
1]0]1 Rotate on non-specific EQI command
11a0]0 Rotate in automatic EQI mode (sat)
gjpojo Rotate in avtomatic EOI mode (clear) } Automatic rotation
11111 + Rotate on specific EOl command
11110 % Setpriority command
al1lo No aperation } Specific rotation

tlp-12are used

‘l Controller will not confuse OCW2 with ICW1 since D4 =1

68

Example

ISR PROC FAR

MOV AL, 00100000b
OUT 20h, AL
IRET

ISR ENDP

What should be OCW1 if interrupt inputs IR0 through IR3 are to be masked
and IR4 through IR7 are to be unmasked?

D3D2D1D0 = 1111
D7.D4=0
= 00001111 =0F

What should be OCW?2; if priority scheme rotate on non specific EOI issued
101 00000 (since it doesn’t have to be specific on certain bit

69

OCwa3

Permits reading of the contents of the ISR or IRR registers through software

OCcwa
Ag Dy Dg Ds Dy Dy Dy Dy Dy
4] 0 ESMM | Smm 0 1 P RR Rl

READ REGISTER COMMAND

0 1 0 1

r b |”

0 0 1 1

Read IR reqg on | Read 1S reg on
Mo Action jnext RD pulse | next RD pulse

2= 1 = Poll command
0 = Mo poll command

SPECIAL MASK MODE
w1 0 1 0 1
—=| 0 0 1 1

Reset special | Set special
Mo Mction mask mask

FIGURE 8. 82C59A OPERATION COMMAND WORD FORMAT

70

Example

Normally when an IR is acknowledged and EOI is not issued, lower priority
interrupts will be inhibited.

So the SPECIAL MASK MODE, when a mask bit is set in OCW1, it
inhibits further interrupts at that level and end enables from all other levels,
that are not masked.

MOV AL, 00010000b ; mask IRQ4

OUT 21h, AL ; OCWL1 (IMR)
MOV AL, 01101000b ; special mask mode
OUT 20h, AL ; OCW3

; by masking itself and selecting the special mask mode
interrupts on IRQ5 thru IRQ7 will now be accepted by the
controller as well as IRQO thru IRQ3

71

IR7

» Controller does not remember interrupt requests that are not
acknowledged

« If aninterrupt is requested but no IR bit is found during INTA that is
IR is removed before acknowledged, then controller will default to

an IR7

« Ifthe IR7 input is used for a legitimate device, the service routine
should read the IS register and test to be sure that bit 7 is high
ISR7 PROC FAR

MOV AL, 00001011b
ouT 20h, AL

IN AL, 20h

TEST AL, 80h ; IS7 set

JZ FALSE

; process interrupt here
FALSE: IRET

ISR7 ENDP

72

Ao —1 A,
D—D,; - 4 = DB,~DB

Svstem bu INTR — | INT RO = clock
) : - RD - RD
Example s |
A\ -—- A 0, .L ¥ [
A - A
A =] A
. . Ag "y
Analyze the circuit A ———) Es
. A o M/IO = E,
and write an o] e
appropriate main - —
. Ay . 74 3(
program and a service i -
routine that counts as
a decimal number the o -
positive edges of the 00000H [~
clock signal applied 00120H et S ' '
I { wvector e -\I.u.'k Save
M 01000H /—————— COUNT - :\k'l:"::tnl | [":'lf.:'f.:m
Use type number 72 | Daua -
START | - : hJ . . h 4
Main Set up it
{,“.'R\.__,_ | j_‘ FRAM |
Int L4 i 2
r e procea
OFFOOH Y y
Stack E bl Return
OFFFFH [1 | "'-h".r"1~‘~
Y
RESET - Dedicaed - Lrom imter 'r'l“
FFFFFH L__ § .
ib)

Example

e A0 not used

e« Two I/O addresses are FFOOh and FF02h
e« FFOOh: ICW1,

e FFO2h: ICW2, ICWS3, ICW4, OCW1

e |CW1 =00010011b = 13h

e type number 72 will be used
— ICW2 =01001000b = 48h

« |[CW3 not needed

 nonbuffered and auto EOI
— ICW4 =03h

* mask all other interrupts but IRO
— OCW1= 11111110b = FEh

74

Main program and ISR

CLI

START: MOV AX, 0
MOV ES, AX
MOV AX, 100h
MOV DS, AX
MOV AX, OFFOh; stack
MOV SS, AX
MOV SP, 100h

; interrupt install
MOV AX, OFFSET SRV72
MOV [ES:120h], AX
MOV AX, SEG SRV72
MOV [ES:122h]. AX

Example contd

; initialization _ : :
; service routine
MOV DX, OFFOOh SRV72: PUSH AX
MOV AL, 13h MOV AL, [COUNT]
OUT DX, AL INC AL
MOV DX, OFF02h DAA
MOV AL, 48h MOV [COUNT], AL
OUT DX, AL POP AX
MOV AL, 03h IRET
OUT DX, AL
MOV AL, OFEh
OUT DX, AL
STI

; wait for interrupt
HERE: JMP HERE

