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COMBINATIONAL LOGIC CIRCUITS 
 
4.1 INTRODUCTION 

The digital system consists of two types of circuits, namely: 

(i) Combinational circuits and 

(ii) Sequential circuits 

A combinational circuit consists of logic gates, where outputs are at any instant and 

are determined only by the present combination of inputs without regard to previous 

inputs or previous state of outputs. A combinational circuit performs a specific 

information-processing operation assigned logically by a set of Boolean functions. 

Sequential circuits contain logic gates as well as memory cells. Their outputs depend 

on the present inputs and also on the states of memory elements. Since the outputs of 

sequential circuits depend not only on the present inputs but also on past inputs, the 

circuit behavior must be specified by a time sequence of inputs and memory states. 

A combinational circuit consists of input variables, logic gates, and output variables. 

The logic gates accept signals from inputs and output signals are generated according 

to the logic circuits employed in it. Binary information from the given data transforms 

to desired output data in this process. Both input and output are obviously the binary 

signals, i.e., both the input and output signals are of two possible states, logic 1 and 

logic 0. Figure 4.1 shows a block diagram of a combinational logic circuit. There are 

n number of input variables coming from an electric source and m number of output 

signals go to an external destination. The source and/or destination may consist of 

memory elements or sequential logic circuit or shift registers, located either in the 

vicinity of the combinational logic circuit or in a remote external location. But the 

external circuit does not interfere in the behavior of the combinational circuit. 

 

 

 

 

 

 

 

 

Figure (4-1) 
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4.2 DESIGN PROCEDURE 

Any combinational circuit can be designed by the following steps of design 

procedure. 

1. The problem is stated. 

2. Identify the input variables and output functions. 

3. The input and output variables are assigned letter symbols. 

4. The truth table is prepared that completely defines the relationship between the 

input variables and output functions. 

5. The simplified Boolean expression is obtained by any method of minimization: 

algebraic method, Karnaugh map method, or tabulation method. 

6. A logic diagram is realized from the simplified expression using logic gates. 

 

4.3 ADDERS 

Various information-processing jobs are carried out by digital computers. Arithmetic 

operations are among the basic functions of a digital computer. Addition of two 

binary digits is the most basic arithmetic operation. The simple addition consists of 

four possible elementary operations, which are 0+0 = 0, 0+1 = 1, 1+0 = 1, and 1+1 = 

10. The first three operations produce a sum of one digit, but the fourth operation 

produces a sum consisting of two digits. The higher significant bit of this result is 

called the carry. A combinational circuit that performs the addition of two bits as 

described above is called a half-adder. When the augend and addend numbers contain 

more significant digits, the carry obtained from the addition of two bits is added to the 

next higher-order pair of significant bits. Here the addition operation involves three 

bits—the augend bit, addend bit, and the carry bit and produces a sum result as well as 

carry. The combinational circuit performing this type of addition operation is called a 

full-adder. In circuit development two half-adders can be employed to form a full-

adder. 

4.3.1 Design of Half-adders 

As described above, a half-adder has two inputs and two outputs. Let the input 

variables augend and addend be designated as A and B, and output functions be 

designated as S for sum and C for carry. The truth table for the functions is below. 
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From the truth table in Figure 4.2, it can be seen that the outputs S and C functions are 

similar to Exclusive-OR and AND functions respectively, as shown in Figure 4.3 in 

Chapter 3. The Boolean expressions are 

S = A′B+AB′ and 

C = AB. 

Figure 4.3 shows the logic diagram to implement the half-adder circuit. 

 

 

 

 

 

4.3.2 Design of Full-adders 

A combinational circuit of full-adder performs the operation of addition of three 

bits—the augend, addend, and previous carry, and produces the outputs sum and 

carry. Let us designate the input variables augend as A, addend as B, and previous 

carry as X, and outputs sum as S and carry as C. As there are three input variables, 

eight different input combinations are possible. The truth table is shown in Figure 4.4 

according to its functions. 

 

 

 

 

 

 

 

Figure (4-2) 

 

Figure (4-3) 
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To derive the simplified Boolean expression from the truth table, the Karnaugh map 

method is adopted as in Figures 4.5(a)-(b). 

  

 

 

 

The simplified Boolean expressions of the outputs are 

S = X′A ′B + X′AB′ + XA′B′ + XAB    and 

C = AB + BX + AX. 

The logic diagram for the above functions is shown in Figure 4.6. It is assumed 

complements of X, A, and B are available at the input source. 

Note that one type of configuration of the combinational circuit diagram for full-adder 

is realized in Figure 4.6, with two-input and three-input AND gates, and three input 

and four-input OR gates. Other configurations can also be developed where number 

and type of gates are reduced. For this, the Boolean expressions of S and C are 

modified as follow. 

 

 

 

 

 

 

Figure (4-4) 

  

Figure 4.5(b) Map for function C. 

 

Figure 4.5(a) Map for function S. 

 

Figure (4-6) 
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S = X′A ′B + X′AB′ + XA′B′ + XAB 

= X′ (A′B + AB′) + X (A′B′ + AB) 

= X′ (A ⊕ B) + X (A ⊕ B)′ 

= X ⊕ A ⊕ B 

C = AB + BX + AX = AB + X (A + B) 

= AB + X (AB + AB′ + AB + A′B) 

= AB + X (AB + AB′ + A’B) 

= AB + XAB + X (AB′ + A’B) 

= AB + X (A ⊕ B) 

Logic diagram according to the modified expression is shown Figure 4.7. 

 

 

 

 

 

You may notice that the full-adder developed in Figure 4.7 consists of two 2-input 

AND gates, two 2-input XOR (Exclusive-OR) gates and one 2-input OR gate. This 

contains a reduced number of gates as well as type of gates as compared to Figure 4.6. 

Also, if compared with a half-adder circuit, the full-adder circuit can be formed with 

two half-adders and one OR gate. 

4.4 SUBTRACTORS 

Subtraction is the other basic function of arithmetic operations of information-

processing tasks of digital computers. Similar to the addition function, subtraction of 

two binary digits consists of four possible elementary operations, which are 0–0 = 0, 

0–1 = 1 with borrow of 1, 1–0 = 1, and 1–1 = 0. The first, third, and fourth operations 

produce a subtraction of one digit, but the second operation produces a difference bit 

as well as a borrow bit. The borrow bit is used for subtraction of the next higher 

significant bit. A combinational circuit that performs the subtraction of two bits as 

described above is called a half-subtractor. The digit from which another digit is 

subtracted is called the minuend and the digit which is to be subtracted is called the 

subtrahend. When the minuend and subtrahend numbers contain more significant 

 

Figure (4-7) 
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digits, the borrow obtained from the subtraction of two bits is subtracted from the next 

higher-order pair of significant bits. Here the subtraction operation involves three 

bits—the minuend bit, subtrahend bit, and the borrow bit, and produces a different 

result as well as a borrow. The combinational circuit that performs this type of 

addition operation is called a full-subtractor. Similar to an adder circuit, a full-

subtractor combinational circuit can be developed by using two half-subtractors. 

 

4.4.1 Design of Half-subtractors 

A half-subtractor has two inputs and two outputs. Let the input variables minuend and 

subtrahend be designated as X and Y respectively, and output functions be designated 

as D for difference and B for borrow. The truth table of the functions is as follows. 

 

 

 

 

 

 

By considering the minterms of the truth table in Figure 4.8, the Boolean expressions 

of the outputs D and B functions can be written as 

D = X′Y + XY ′   and 

B = X′Y. 

Figure 4.9 shows the logic diagram to realize the half-subtractor circuit. 

 

 

 

 

 

 

  

 

 

Figure (4-8) 

 

Figure (4-9) 
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4.4.2 Design of Full-subtractors 

A combinational circuit of full-subtractor performs the operation of subtraction of 

three bits—the minuend, subtrahend, and borrow generated from the subtraction 

operation of previous significant digits and produces the outputs difference and 

borrow. Let us designate the input variables minuend as X, subtrahend as Y, and 

previous borrow as Z, and outputs difference as D and borrow as B. Eight different 

input combinations are possible for three input variables. The truth table is shown in 

Figure 4.10(a) according to its functions. 

 

 

 

 

 

 

 

  

 

 

 

 

Karnaugh maps are prepared to derive simplified Boolean expressions of D and B as 

in Figures 4.10(b) and 4.10(c), respectively. 

The simplified Boolean expressions of the outputs are 

D = X′Y ′Z + X′YZ′ + XY′Z′ + XYZ and 

B = X′Z + X′Y + YZ. 

The logic diagram for the above functions is shown in Figure 4.11. 

Similar to a full-adder circuit, it should be noticed that the configuration of the 

combinational circuit diagram for full-subtractor as shown in Figure 4.11 contains  

two-input and three-input AND gates, and three-input and four-input OR gates. Other 

 

Figure 4-10 (a) 

  

Figure 4.10(b) Map for function B. Figure 4.10(b) Map for function D. 
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configurations can also be developed where number and type of gates are reduced. 

For this, the Boolean expressions of D and B are modified as follows. 

 

 

 

 

 

 

 

D = X′Y ′Z + X′YZ′ + XY′Z′ + XYZ 

= X′ (Y′Z + YZ′) + X (Y′Z′ + YZ) 

= X′ (Y⊕Z) + X (Y⊕Z)′ 

= X⊕Y⊕Z 

B = X′Z + X′Y +YZ = X′Y + Z (X′ + Y) 

= X′Y + Z(X′Y + X′Y ′ + XY + X′Y) 

= X′Y + Z(X′Y + X′Y ′ + XY) 

= X′Y + X′YZ + Z(X′Y ′ + XY) 

= X′Y + Z(X⊕Y) ′ 

Logic diagram according to the modified expression is shown in Figure 4.12. 

 

 

 

 

 

Note that the full-subtractor developed in Figure 4.12 consists of two 2-input AND 

gates, two 2-input XOR (Exclusive-OR) gates, two INVERTER gates, and one 2-

input OR gate. This contains a reduced number of gates as well as type of gates as 

compared to Figure 4.12. Also, it may be observed, if compared with a half-subtractor 

circuit, the full-subtractor circuit can be developed with two half-subtractors and one 

OR gate. 

 

Figure 4-11 

 
Figure 4-12 


