4–142. Replace the distributed loading with an equivalent resultant force, and specify its location on the beam measured from point A.

4–142. Replace the distributed loading with an equivalent resultant force, and specify its location on the beam measured from point A.

Loading: The distributed loading can be divided into four parts as shown in Fig. a. The magnitude and location of the resultant force of each part acting on the beam are also indicated in Fig. a.

Resultants: Equating the sum of the forces along the y axis of Figs. a and b,

$$ \sum F_y = \sum \frac{1}{2} \left(15(3) + \frac{1}{2}(5(3)) + 10(3) + \frac{1}{2}(10)(3) \right) = 75 \text{ kN}$$

Ans.

If we equate the moments of F_R, Fig. b, to the sum of the moment of the forces in Fig. a about point A,

$$ \sum (M_R)_A = \sum M_A = \frac{1}{2} \left(15(3)(1) - \frac{1}{2}(5)(3)(1) - 10(3)(1.5) - \frac{1}{2}(10)(3)(4) \right)$$

$$ \sum = 1.20 \text{ m}$$

Ans.
4–143. Replace the distributed loading with an equivalent resultant force, and specify its location on the beam measured from point A.

Loadings: The distributed loading can be divided into three parts as shown in Fig. a.

Resultants: Equating the sum of the forces along the y axis of Figs. a and b,

\[\sum F_y = 0; \quad F_R = \frac{1}{2}(8)(3) + \frac{1}{2}(4)(3) + 4(3) = 30 \text{ kN} \]

Ans.

If we equate the moments of \(F_R \), Fig. b, to the sum of the moment of the forces in Fig. a about point A,

\[\sum (M_A)_y = \sum M_A: \quad -30(3) = \frac{1}{2}(8)(3)(2) - \frac{1}{2}(4)(3)(4) - 4(3)(4.5) \]

\[(2) = 3.4 \text{ m} \]

Ans.
5–13. Determine the horizontal and vertical components of reaction at \(C \) and the tension in the cable \(AB \) for the truss in

Equations of Equilibrium: The tension in the cable can be obtained directly by summing moments about point \(C \).

\[E_M = 0; \quad T_{AB}\cos 30^\circ(2) + T_{AB}\sin 30^\circ(4) - 3(2) - 4(4) = 0 \]
\[T_{AB} = 5.89 \text{ kN} \quad \text{Ans} \]

\[-T_{AC} = 0; \quad C_x = 5.89 \cos 30^\circ = 0 \]
\[C_x = 5.11 \text{ kN} \quad \text{Ans} \]

\[+T_{EF} = 0; \quad C_y = 5.89 \sin 30^\circ - 3 - 4 = 0 \]
\[C_y = 4.05 \text{ kN} \quad \text{Ans} \]
5–21. Determine the horizontal and vertical components of reaction at the pin A and the tension developed in cable BC used to support the steel frame.

Equations of Equilibrium: From the free-body diagram of the frame, Fig. a, the tension T of cable BC can be obtained by writing the moment equation of equilibrium about point A.

$$\sum M_A = 0; \quad T \left(\frac{3}{5} \right) 30 + T \left(\frac{4}{5} \right) 1 - 60(1) - 30 = 0$$

$$T = \frac{34.62 \text{ kN}}{} = 34.62 \text{ kN}$$

Using this result and writing the force equations of equilibrium along the x and y axes,

$$\sum F_x = 0; \quad A_x - 34.62 \left(\frac{3}{5} \right) = 0$$

$$A_x = 20.77 \text{ kN} = 20.8 \text{ kN}$$

$$\sum F_y = 0; \quad A_y - 60 - 34.62 \left(\frac{4}{5} \right) = 0$$

$$A_y = 87.69 \text{ kN} = 87.7 \text{ kN}$$
5–27. As an airplane’s brakes are applied, the nose wheel exerts two forces on the end of the landing gear as shown. Determine the horizontal and vertical components of reaction at the pin C and the force in strut AB.

Equations of Equilibrium: The force in strut AB can be obtained directly by summing moments about point C.

\[\sum \tau_C = 0; \quad 2(1) - 6(1\tan 20^\circ) + F_{AB}\sin 50^\circ(0.4) - F_{AB}\cos 50^\circ(0.4\tan 20^\circ) = 0 \]

\[F_{AB} = 0.8637 \text{ kN} = 0.864 \text{ kN} \quad \text{Ans} \]

Using the result \(F_{AB} = 0.8637 \text{ kN} \) and sum forces along x and y axes, we have:

\[\sum F_x = 0; \quad 0.8637\sin 50^\circ + 2 - C_x = 0 \]

\[C_x = 2.66 \text{ kN} \quad \text{Ans} \]

\[\sum F_y = 0; \quad 6 + 0.8637\cos 50^\circ - C_y = 0 \]

\[C_y = 6.56 \text{ kN} \quad \text{Ans} \]
5–32. The jib crane is supported by a pin at C and rod AB. If the load has a mass of 2 Mg with its center of mass located at G, determine the horizontal and vertical components of reaction at the pin C and the force developed in rod AB on the crane when $x = 5$ m.

Equations of Equilibrium: Realizing that rod AB is a two-force member, it will exert a force F_{AB} directed along its axis on the beam, as shown on the free-body diagram in Fig. 6. From the free-body diagram, F_{AB} can be obtained by writing the moment equation of equilibrium about point C.

$$\sum M_C = 0; \quad F_{AB} \left(\frac{3}{5} \right) (4) + F_{AB} \left(\frac{4}{5} \right) (0.2) - 2000 (9.81)(5) = 0$$

$$F_{AB} = 38320.31 \text{ N} = 38.3 \text{ kN} \quad \text{Ans.}$$

Using the above result and writing the force equations of equilibrium along the x and y axes.

$$\sum F_x = 0; \quad C_x - 38320.31 \left(\frac{4}{5} \right) = 0$$

$$C_x = 30656.25 \text{ N} = 30.7 \text{ kN} \quad \text{Ans.}$$

$$\sum F_y = 0; \quad 38320.31 \left(\frac{3}{5} \right) - 2000 (9.81) - C_y = 0$$

$$C_y = 3372.19 \text{ N} = 3.4 \text{ kN} \quad \text{Ans.}$$
5–42. Determine the support reactions of roller A and the smooth collar B on the rod. The collar is fixed to the rod AB, but is allowed to slide along rod CD.

5–42. Determine the support reactions of roller A and the smooth collar B on the rod. The collar is fixed to the rod AB, but is allowed to slide along rod CD.

Equations of Equilibrium: From the free-body diagram of the rod. Fig. 6, N_B can be obtained by writing the force equation of equilibrium along the axis.

\[
\sum F_x = 0: \quad N_B \sin 45^\circ - 900 = 0 \\
N_B = 1272.79 \text{ N} = 1.27 \text{ kN} \quad \text{Ans.}
\]

Using the above result and writing the force equation of equilibrium and the moment equation of equilibrium about point B,

\[
\sum F_x = 0: \quad 1272.79 \cos 45^\circ - A_c = 0 \\
A_c = 900 \text{ N} \quad \text{Ans.}
\]

\[
\begin{align*}
\sum M_B &= 0; \\
&= -900(1) + 900(2) \sin 45^\circ - 600 + M_B = 0 \\
M_B &= 227 \text{ N} \cdot \text{m} \quad \text{Ans.}
\end{align*}
\]

5–89. Determine the horizontal and vertical components of reaction at the pin A and the reaction at the roller B required to support the truss. Set $F = 600 \text{ N}$.

5–89. Determine the horizontal and vertical components of reaction at the pin A and the reaction at the roller B required to support the truss. Set $F = 600 \text{ N}$.

Equations of Equilibrium: The normal reaction N_a can be obtained directly by summing moments about point A.

\[
\begin{align*}
\sum M_a &= 0; \\
&= 600(6) + 600(4) + 600(2) - N_a \cos 45^\circ (2) = 0 \\
N_a &= 5091.17 \text{ N} = 5.09 \text{ kN} \quad \text{Ans.}
\end{align*}
\]

\[
\begin{align*}
\sum F_x &= 0; \\
&= A_c - 5091.17 \cos 45^\circ = 0 \\
A_c &= 3600 \text{ N} = 3.60 \text{ kN} \quad \text{Ans.}
\end{align*}
\]

\[
\begin{align*}
\sum F_y &= 0; \\
&= 5091.17 \sin 45^\circ - 3(600) - A_y = 0 \\
A_y &= 1800 \text{ N} = 1.80 \text{ kN} \quad \text{Ans.}
\end{align*}
\]