Lec. 3

Examples for Computing Time & Space Complexity

Ex. 1:
Find the result of \(\sum_{j=1}^{n} A_j \)

Algorithm \textit{sum}(A,n):
\begin{align*}
\text{Input:} & \quad \text{a positive integer } n \text{ and an array } A \text{ indexed from } 1 \text{ to } n. \\
\text{Output:} & \quad S, \text{ the sum of the numbers in } A.
\end{align*}
\begin{enumerate}
\item \(S \leftarrow 0 \)
\item \textbf{for } \(j \leftarrow 1 \) \textit{ to } \(n \)
\item \(S \leftarrow S + A[j] \)
\item \textbf{end for}
\item \textbf{return } S
\end{enumerate}

This problem is characterized with \(n \)

Space Complexity: This algorithm requires two cells, for \(S \) and \(j \) variables, this is constant storage and independent with problem characteristics, thus

\(S_{\text{sum}}(n) = 0 \)

Time Complexity with Operation counts: With selection addition operation for array elements (A)

\(T_{\text{sum}}(n) = n \)

Time Complexity with Step counts:
\[
\begin{array}{l}
1. \ldots \ldots \ 1 \\
2. \ldots \ldots \ n+1 \\
3. \ldots \ldots \ n \\
4. \ldots \ldots \ 0 \\
5. \ldots \ldots \ 1 \\
\end{array}
\]

\(T_{\text{sum}}(n) = 2n+3 \)

Ex. 2: Find the summation of the elements of two array:
\(C(mn) = A(mn) + B(mn) \)

Algorithm \textit{add} (A, B, m, n):
\begin{align*}
\text{Input:} & \quad \text{a positive integers } m, n \text{ and two-dimensional arrays of numbers } A \text{ and } B \text{ each of which has its rows indexed from } 1 \text{ to } m \text{ and columns from } 1 \text{ to } n. \\
\text{Output:} & \quad \text{a two-dimensional array of numbers } C, \text{ containing addition of } A \text{ and } B.
\end{align*}
\begin{enumerate}
\item \textbf{for } \(i \leftarrow 1 \) \textit{ to } \(m \)
\item \textbf{for } \(j \leftarrow 1 \) \textit{ to } \(n \)
\item \(C[i, j] \leftarrow A[i, j] + B[i, j] \)
\item \textbf{end for}
\item \textbf{end for}
\item \textbf{return} array \(C \)
This problem is characterized with \(m \) and \(n \)

Space Complexity:

\[
S_{\text{add}}(m,n) = mn + 2 \quad \text{(where \(mn \) is array size, 2 for \(i, j \)).}
\]

Time Complexity with Operation counts: With selection addition operation between the elements of (A), (B) arrays

\[
T_{\text{add}}(m,n) = mn
\]

Time Complexity with Step counts:

1. \(\ldots \ldots \) \(m+1 \)
2. \(\ldots \ldots \) \(m(n+1) \)
3. \(\ldots \ldots \) \(m(2n+1) \)
6. \(\ldots \ldots \) \(mn \)

\[
T_{\text{add}}(m,n) = 3mn + 2m + 1
\]

Note:

This expression is accepted when \(n \geq m \), but when \(m > n \), two for statements are replaced to decrease time complexity, it becomes:

\[
T_{\text{add}}(m,n) = 3mn + 2n + 1
\]

H.W.:

Compute space and time complexity of a problem which finds the summation of the elements of two array:

\[
Z(n) = X(n) + Y(n)
\]

Ex. 3: Fibonacci Numbers.

It is starting as:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, …………

Where as every new number will be getting through adding two previous numbers, if first number in Fibonacci is \(F_0 \), then \(F_0 = 0 \) and \(F_1 = 1 \), in general:

\[
F_n = F_{n-1} + F_{n-2} \quad , \quad n \geq 2
\]

```plaintext
Algorithm fibonacci (n):
Input: a nonnegative integer n.
Output: fib, the nth term of the fibonacci sequence.
1. if \( n \leq 1 \) then
2. fib \( \leftarrow n \)
3. else
4. fnm1 \( \leftarrow 0 \)
5. fnm2 \( \leftarrow 1 \)
6. for i \( \leftarrow 2 \) to n
7. fib \( \leftarrow fnm1 + fnm2 \)
8. fnm1 \( \leftarrow fnm2 \)
9. fnm2 \( \leftarrow fib \)
10. end for
11. end if
12. return fib
```
This problem is characterized with \(n \).

Space Complexity: This algorithm requires four cells, for storing the values of \(\text{fib}, \text{fmn1}, \text{fmn2} \) and \(i \), this is constant storage and independent with problem characteristics, thus

\[S_{\text{fibonacci}}(n) = 0 \]

Time Complexity with Operation counts: With selection assignment operation between the elements of Fibonacci numbers:

7. \(\ldots \quad \ldots \quad n-1 \)
8. \(\ldots \quad \ldots \quad n-1 \)
9. \(\ldots \quad \ldots \quad n-1 \)

\[T_{\text{fibonacci}}(n) = 3(n-1) = 3n-3 \]

Time Complexity with Step counts:

Two cases must be considered in this method:

First case: when \(n=0 \) or \(n=1 \), number of steps is 3.

Second case: when \(n>1 \), number of steps is \(4n+1 \).

\[T_{\text{fibonacci}}(n) = \begin{cases} 3 & \text{if } n \in \{0,1\} \\ 4n+1 & \text{if } n > 1 \end{cases} \]

There is a relationship between time complexity and problem's characteristics, where as increasing \(n \) leads to linear increasing in time complexity, which is better than squared increasing.

Note:

In most problems there is a balance between amount of time and algorithm's space, more storage leads to increase running speed, and the reverse of this statement is true.

Ex. 4: Reform Fibonacci algorithm.

1. \(\text{comment: f[0..n] is an auxiliary array.} \)
2. \(f[0] \leftarrow 0; \)
3. \(\text{if } n > 0 \text{ then} \)
4. \(f[1] \leftarrow 1 \)
5. \(\text{for } i \leftarrow 2 \text{ to } n \)
6. \(f[i] \leftarrow f[i-1] + f[i-2]; \)
7. \(\text{end for} \)
8. \(\text{return } f[n]; \)

Space Complexity:

\[S_{\text{fibonacci}}(n) = n+2 \]

Time Complexity with Step counts:
Ex. 5: Compute Prefix averages for set of numbers.

Problem concept is there is a certain array lets X of n integer numbers, the required is computing another array lets A, where an element $A[i]$ is the average of elements from $X[1]$ to $X[i]$ for $i=1 \ldots n$, it is meaning:

$$A_i = \frac{\sum_{j=1}^{i} X_j}{i}$$

Algorithm \textit{prefixAverages}(X):

\begin{enumerate}
\item for $i \leftarrow 1$ to n
\item $a \leftarrow 0$
\item for $j \leftarrow 1$ to i
\item $a \leftarrow a + X[j]$
\item end for
\item $A[i] \leftarrow a / i$
\item end for
\item return array A
\end{enumerate}

This problem is characterized with n.

Time Complexity with Step counts:

1. \ldots $n+1$
2. \ldots n
3. \ldots $\sum_{i=1}^{n}(i+1)$ \quad \Rightarrow \quad \sum_{i=1}^{n}(i+1) \sum_{i=1}^{n} \Rightarrow \quad T_{\text{prefixAverages}}(n) = n^2 + 6n + 1$
4. \ldots $\sum_{i=1}^{n}$
5. \ldots n
6. \ldots n
8. \ldots n

The function of time complexity of prefix average problem (\textbf{with the above algorithm}) is \textbf{square}.