2-1 SOLUTION METHODS:

Solutions to the problems of statics may be obtained in one or more of the following ways:

1. **Graphical Solution:**
 By drowning all the force act on the body with a specific scale. We can find the equivalent force (resultant) by close the force system.

 Ex. 3
 Combine the two forces \(P \) and \(T \), which act on the fixed structure at \(B \), into a single equivalent force \(R \).

 Sol
 \[R = 524 \text{ lb} \]
 \[\theta = 48.6^\circ \]

2. **Algebraic Solution:**
 We obtain mathematical solution by hand, using one or more of three theorems to get the solution. These theorem are :

 Pythagorean Theorem:
 \[R^2 = a^2 + b^2 \]
 Eq 3
 Note: one of the three angles most be 90°.

 \[\theta + \beta + \alpha = 180^\circ \]
 Eq 4
Law of sines:
In any triangle, the length of side to the sine of the opposite angles is constant, then

\[
\frac{R}{\sin \theta} = \frac{a}{\sin \alpha} = \frac{b}{\sin \beta}
\]

Eq 4

Law of cosines:

\[
R^2 = a^2 + b^2 - 2ab \cos \theta
\]

or

\[
b^2 = R^2 + a^2 - 2Ra \cos \beta
\]

or

\[
a^2 = R^2 + b^2 - 2Rb \cos \alpha
\]

Eq 5

Ex 4
For the forces \(F_1 \) and \(F_2 \) act on the bracket as shown in the figure. Determine the magnitude of the resultant of the two forces and its direction.

\[
F^2 = F_1^2 + F_2^2 - 2F_1F_2 \cos 130^\circ
\]

\[
F^2 = (80)^2 + (100)^2 - 2 \times (40) \times (100) \times \cos 130^\circ
\]

\[
F^2 = 26699.56
\]

\[
F = 163.4 N
\]

using the law of sines for the lower triangle, we have

\[
\frac{163.4}{\sin 130} = \frac{100}{\sin(\alpha+20)}
\]

\[
\sin(\alpha+20) = 0.4688
\]

\[
(\alpha+20) = \sin^{-1} 0.4688
\]

\[
(\alpha+20) = 27.956
\]

\[
\alpha = 27.956 - 20 = 7.956^\circ
\]

See examples 4, 5, 6, and 7 page (15)
Ex 5

The forces F_1, F_2, and F_3, all of which act on point A of the bracket are specified in three different ways. Determine the resultant and its direction.

1. Graphical solution

2. Algebraic solution

Using the law of cosines to find C

$$C^2 = 800^2 + 600^2 - 2(800)(600) \cos(81.56)$$

$$C^2 = 859097 \quad \rightarrow \quad C = 926.9$$

Using the law of sines to find α

$$\frac{C}{\sin 81.56} = \frac{800}{\sin \alpha}$$

$$\sin \alpha = 0.8535 \quad \rightarrow \quad \alpha = 58.69^\circ$$

$$\beta + \alpha = 71.86 \quad \rightarrow \quad \beta = 71.85 - 58.69$$

$$\beta = 13.72^\circ$$
Using the cosines law to find R

$$R^2 = 926.87^2 + 500^2 - 2(926.87)(500) \cos (13.27)$$

$$R^2 = 206.966 \quad R = 455 \, N$$

Using the sine’s law to find δ

$$\frac{R}{\sin 13.27} = \frac{500}{\sin \delta}$$

$\therefore \sin \delta = 0.252 \quad \delta = 14.6^\circ$

To find the angle of the resultant θ

$\varepsilon = 58.69 - 35$

$\varepsilon = 23.69$

$\theta = 360 - (\varepsilon - \delta) \quad \theta = 360 - (23.69 - 14.6)$

$\therefore \theta = 351^\circ$
1. The two structural members, one of which is in tension and the other in compression, exert the indicated force in joint O. Determine the magnitude of the resultant \(R \) of the two forces and the angle \(\theta \) which \(R \) makes with the positive \(x \)-axis.

 \[\text{Ans. } R = 8.75kN \quad \theta = 171.6° \]

2. Determine the resultant \(R \) of the two forces shown by applying the parallelogram rule.

 \[\text{Ans. } R = 529.5N \quad \theta = 100.89° \]
3. While steadily pushing the machine up an incline, a person exerts a 180 N force P as shown. Determine the components of P which are parallel and perpendicular to the incline.

Answer. $P_t = 163.1$ N $P_n = -76.1$ N

4. If the resultant F_R of the two forces acting on the log is to be directed along the positive x-axis and have a magnitude of 10 kN. Determine the angle θ of the cable, attached to B such that the force F_B in this cable is minimum what is the magnitude of the force in each cable for this situation.

Answer. $\theta = 60^\circ$, $F_A = 8.66$ kN, $F_B = 5$ kN
5. Determine the x and y components of each force acting on the gusset plate on the bridge truss. Show that the resultant force is zero. [R. C. Hibbeler (2-47)]

Ans.

\[
\begin{align*}
F_{1x} &= 200 \text{ lb} \\
F_{1y} &= 0 \\
F_{2x} &= 320 \text{ lb} \\
F_{2y} &= -240 \text{ lb} \\
F_{3x} &= 180 \text{ lb} \\
F_{3y} &= 240 \text{ lb} \\
F_{4x} &= -300 \text{ lb} \\
F_{4y} &= 0
\end{align*}
\]