انت هنا الان : شبكة جامعة بابل > موقع الكلية > نظام التعليم الالكتروني > مشاهدة المحاضرة

Continuity and limits 1

الكلية كلية الهندسة     القسم  الهندسة الميكانيكية     المرحلة 1
أستاذ المادة احمد كاظم حسين الحميري       12/07/2018 16:22:40
A form of the epsilon–delta definition of continuity was first given by Bernard Bolzano in 1817. Augustin-Louis Cauchy defined continuity of {\displaystyle y=f(x)} y=f(x) as follows: an infinitely small increment {\displaystyle \alpha } \alpha of the independent variable x always produces an infinitely small change {\displaystyle f(x+\alpha )-f(x)} f(x+\alpha )-f(x) of the dependent variable y (see e.g. Cours d Analyse, p. 34). Cauchy defined infinitely small quantities in terms of variable quantities, and his definition of continuity closely parallels the infinitesimal definition used today (see microcontinuity). The formal definition and the distinction between pointwise continuity and uniform continuity were first given by Bolzano in the 1830s but the work wasn t published until the 1930s. Like Bolzano,[1] Karl Weierstrass[2] denied continuity of a function at a point c unless it was defined at and on both sides of c, but Edouard Goursat[3] allowed the function to be defined only at and on one side of c, and Camille Jordan[4] allowed it even if the function was defined only at c. All three of those nonequivalent definitions of pointwise continuity are still in use.[5] Eduard Heine provided the first published definition of uniform continuity in 1872, but based these ideas on lectures given by Peter Gustav Lejeune Dirichlet in 1854.[6]

المادة المعروضة اعلاه هي مدخل الى المحاضرة المرفوعة بواسطة استاذ(ة) المادة . وقد تبدو لك غير متكاملة . حيث يضع استاذ المادة في بعض الاحيان فقط الجزء الاول من المحاضرة من اجل الاطلاع على ما ستقوم بتحميله لاحقا . في نظام التعليم الالكتروني نوفر هذه الخدمة لكي نبقيك على اطلاع حول محتوى الملف الذي ستقوم بتحميله .