انت هنا الان : شبكة جامعة بابل > موقع الكلية > نظام التعليم الالكتروني > مشاهدة المحاضرة

الخطة السنوية لمادة فيزياء البلازما

الكلية كلية التربية للعلوم الصرفة     القسم قسم الفيزياء     المرحلة 3
أستاذ المادة بهاء حسين صالح ربيع الحسيني       07/10/2013 07:22:00


(( أستمارة الخطة التدريسية السنوية ))

الاسم
بهاء حسين صالح ربيع


البريد الالكتروني Dr_bahaa19@yahoo.com

اسم المادة
فيزياء بلازما
مقرر الفصل
سنوي
اهداف المادة
1- Definition the plasma.
2- To Classify of plasmas
3- Understanding classical electrodynamics .
4- Knowing Basic Plasma Characteristics.
5- Knowing the electron plasma frequency
6- Studying the Debye length
7- Studying Electrostatic plasma waves
8- Description Coulomb collisions
9- Understanding Motion of a Charged Particle in Magnetic Fields
10- Studying constant uniform magnetic field with non-magnetic forces
11- Studying guiding center motion in nonuniform magnetic fields
12- Description of cold Plasma
13- Description waves in a cold unmagnetized plasma
14- Description the dielectric tensor for a cold magnetized plasma
15- Studying waves in a cold magnetized plasma
16- Description Magnetohydrodynamic of Plasma
17- Knowing the MHD equations
18- Knowing General properties of the ideal MHD description
19- Knowing MHD equilibrium
20- Knowing MHD waves
21- Knowing MHD stability and
22- Knowing MHD shocks
23- Different between MHD waves and MHD shocks
24- Studying the Vlasov equation
25- Description connections to fluid theories
26- Understanding Vlasov theory of electrostatic plasma waves
27- Studying Landau damping
28- Studying the Fokker-Planck equation
29- Understanding binary Coulomb collisions


التفاصيل الاساسية للمادة
Plasma physics is an important subject for a large number of research areas including space physics, astrophysics, controlled fusion research, high-power laser physics, plasma processing, accelerator physics, and many areas of experimental physics. The primary goal of this course is to present the basic principles and main equations of plasma physics at an introductory level, with emphasis on topics of broad applicability.
A plasma may be generally defined as any statistical collection of mobile charged particles. Thus statistical physics and electrodynamics provide the fundamental basis for the physics of plasmas. An undergraduate course in classical electrodynamics (such as PHYS 302) is the only prerequisite for the course; relevant aspects of statistical physics and mechanics are reviewed or introduced as needed.
The required text for the course is "Plasma Dynamics" by R. O. Dendy. This book is chosen because it contains a nice balance between mathematical formulations and physical principles, it is clearly written, and it uses an appealing logical organization of the subject which provides an excellent framework for a first course in plasma physics. The well-known text "Introduction to Plasma Physics and Controlled Fusion" by F. F. Chen is a recommended text for the course, and in many ways it complements and reinforces material covered in Dendy s book.
The course begins with a description of various types of plasmas and a discussion of some basic plasma parameters, such as the Debye length and the plasma frequency. Following a discussion of charged particle motion in electromagnetic fields, progressively more detailed models of plasmas are presented, starting with a dielectric description of cold plasma and moving on to the magnetohydrodynamic and kinetic descriptions. Additional topics may be added as time allows. Students are required to give a presentation to the class on a plasma physics topic related to the course.



Plasma physics is an important subject for a large number of research areas including space physics, astrophysics, controlled fusion research, high-power laser physics, plasma processing, accelerator physics, and many areas of experimental physics. The primary goal of this course is to present the basic principles and main equations of plasma physics at an introductory level, with emphasis on topics of broad applicability.
A plasma may be generally defined as any statistical collection of mobile charged particles. Thus statistical physics and electrodynamics provide the fundamental basis for the physics of plasmas. An undergraduate course in classical electrodynamics (such as PHYS 302) is the only prerequisite for the course; relevant aspects of statistical physics and mechanics are reviewed or introduced as needed.
The required text for the course is "Plasma Dynamics" by R. O. Dendy. This book is chosen because it contains a nice balance between mathematical formulations and physical principles, it is clearly written, and it uses an appealing logical organization of the subject which provides an excellent framework for a first course in plasma physics. The well-known text "Introduction to Plasma Physics and Controlled Fusion" by F. F. Chen is a recommended text for the course, and in many ways it complements and reinforces material covered in Dendy s book.
The course begins with a description of various types of plasmas and a discussion of some basic plasma parameters, such as the Debye length and the plasma frequency. Following a discussion of charged particle motion in electromagnetic fields, progressively more detailed models of plasmas are presented, starting with a dielectric description of cold plasma and moving on to the magnetohydrodynamic and kinetic descriptions. Additional topics may be added as time allows. Students are required to give a presentation to the class on a plasma physics topic related to the course.





الكتب المنهجية
اساسيات في فيزياء البلازما // تأليف د. بهاء حسين صالح ربيع
Chen, F. F. Introduction to Plasma Physics. 2nd ed. New York, NY: Springer, 1984. ISBN: 9780306413322.
See also:


المصادر الخارجية
Shohet, J. L. The Plasma State. San Diego, CA: Academic Press Inc., 1971. ISBN: 9780126405507.
Tanenbaum, B. S. Plasma Physics. New York, NY: McGraw-Hill, 1967. ISBN: 9780070628120.
Intermediate:
Hazeltine, R. D., and F. L. Waelbroeck. The Framework of Plasma Physics. Boulder, CO: Westview Press, 2004. ISBN: 9780813342139.
Goldston, R. J., and P. H. Rutherford. Introduction to Plasma Physics. Philadelphia, PA: IOP Publishing, 1995. ISBN: 9780750301831.
See also:
Clemmow, P. C., and J. P. Dougherty. Electrodynamics of Particles and Plasmas. New York, NY: Perseus Books, 1989. ISBN: 9780201515008.
Spitzer, Lyman, Jr. Physics of Fully Ionized Gases. 2nd ed. Hoboken, NJ: Wiley, 1962.
Schmidt, G. Physics of High Temperature Plasmas. 2nd ed. San Diego, CA: Academic Press, 1979. ISBN: 9780126266603. (Recommended for theory of particle orbits.)
Boyd, T. J. M., and J. J. Sanderson. Plasma Dynamics. New York, NY: Barnes and Noble, 1969. (Recommended for the statistical mechanics description of plasmas.)
Dendy, R., ed. Plasma Physics. Cambridge, UK: Cambridge University Press, 1995. ISBN: 9780521484527. (Recommended for specific chapters on space and plasmas and on industrial plasmas.)
Advanced:
Krall, N. A., and A. W. Trivelpiece. Principles of Plasma Physics. Berkeley, CA: San Francisco Press, 1986. ISBN: 9780911302585.
See also:
Ichimaru, S. Principles of Plasma Physics - A Statistical Approach. Boston, MA: Addison Wesley Publishing Company, 1973. ISBN: 9780805387520.
MHD
J. P. Freidberg. Ideal Magnetohydrodynamics. New York, NY: Springer, 1987. ISBN: 9780306425127.
Plasma Waves
Stix, T. H. Waves in Plasmas. New York, NY: Springer, 1992. ISBN: 9780883188590.
Plasma Diagnostics
Huddlestone, R. H., and S. L. Leonard. Plasma Diagnostic Techniques. San Diego, CA: Academic Press, 1965.
Hutchinson, I. H. Principles of Plasma Diagnostics. Cambridge, UK: Cambridge University Press, 2005. ISBN: 9780521675741.
Magnetic Confinement Fusion
Rose, D. J., and M. Clark, Jr. Plasmas and Controlled Fusion. Cambridge, MA: MIT Press, 1961. ISBN: 9780262180061.
Miyamoto, K. Plasma Physics for Nuclear Fusion. Cambridge, MA: MIT Press, 1989. ISBN: 9780262631174.
Wesson, J. Tokamaks. 3rd ed. Oxford, UK: Oxford University Press, 2004. ISBN: 9780198509226.
Plasma Astrophysics
Tajima, T., and K. Shibata. Plasma Astrophysics. Boulder, CO: Westview Press, 2002. ISBN: 9780813339962.



تقديرات الفصل الفصل الدراسي المختبر الامتحانات اليومية المشروع الامتحان النهائي
مثلاً35% مثلا15% مثلاً10% - مثلاً40%

معلومات اضافية

































جدول الدروس الاسبوعي

الاسبوع التاريخ المادة النظرية المادة العلمية الملاحظات
1 1. Introduction
2 o Definition of a plasma

3 o Classification of plasmas, the n-T diagram
4 1. A brief review of classical electrodynamics
5 DPF and TOKOMAK
6 vector calculus
7 2. Basic Plasma Characteristics
8 1. The electron plasma frequency
9 o The Debye length
10 o Electrostatic plasma waves
11 o Coulomb collisions
12 o Motion of a Charged Particle in Magnetic Fields
13 o Constant uniform magnetic field
14 o Constant uniform magnetic field with non-magnetic forces
15 o أختبار -1-
16
عطلة نصف السنة
17 o Guiding center motion in nonuniform magnetic fields

18 1. Dielectric Description of Cold Plasma

19 o General properties

20 o Waves in a cold unmagnetized plasma

21 o The dielectric tensor for a cold magnetized plasma

22 Waves in a cold magnetized plasma
23 1. Magnetohydrodynamic Description of Plasma

24 o The MHD equations

25 o General properties of the ideal MHD description

26 o MHD equilibrium
27 MHD waves
28 o MHD stability
29 MHD shocks
30 1. Kinetic Description of Plasma

31 The Vlasov equation
32 الاختبار الثاني





توقيع الأستاذ : بهاء حسين صالح ربيع توقيع العميد :


المادة المعروضة اعلاه هي مدخل الى المحاضرة المرفوعة بواسطة استاذ(ة) المادة . وقد تبدو لك غير متكاملة . حيث يضع استاذ المادة في بعض الاحيان فقط الجزء الاول من المحاضرة من اجل الاطلاع على ما ستقوم بتحميله لاحقا . في نظام التعليم الالكتروني نوفر هذه الخدمة لكي نبقيك على اطلاع حول محتوى الملف الذي ستقوم بتحميله .