انت هنا الان : شبكة جامعة بابل > موقع الكلية > نظام التعليم الالكتروني > مشاهدة المحاضرة

موديولات/ماجستير/كورس2/محاضرة6

الكلية كلية التربية للعلوم الصرفة     القسم  قسم الرياضيات     المرحلة 7
أستاذ المادة اسعد محمد علي حسين الحسيني       26/02/2019 16:46:36
1. Modules
Each ring R which we consider will be assumed to contain a multiplicative
identity element, denoted by 1; which differs from its additive identity element
0. Now let R be a ring.
Definition: A left R-module consists of an additive abelian group A together
with a function ? : R × A ? A which satisfies the following four conditions:
1. ? (r, a + a ) = ? (r, a) + ? (r, a );
2. ? (r + r , a) = ? (r, a) + ? (r , a);
3. ? (rr , a) = ? (r, ? (r , a)); and
4. ? (1, a) = a
for all elements r and r of R and all elements a and a of A.
By convention, the element ? (r, a) is denoted by r •a or by ra; and ? is said to provide an operation of scalar multiplication on the abelian group A. Using this juxtaposition notation instead of the function ?, the above four conditions become:
1. r(a + a ) = ra + ra ;
2. (r + r )a = ra + r a;
3. (rr )a = r(r a) and
4. 1a = a

Examples:
1. If R is a field, then left R-modules are also called vector spaces over R.
2. Every additive abelian group A may be regarded as a left Z-module, where Z is the ring of integers, in precisely one way: for n ? Z and a ? A, define na as follows:
1. If n > 0 then na is the sum of n copies of a;
2. If n = 0 then na = 0;
3. If n < 0; then na is the sum of -n copies of –a.
3. Any ring R can be considered as a left R-module in the following manner:
for the abelian group, use R with its additive structure. For the scalar multiplication
of the ring R on the abelian group (R, +), use the ring multiplication.
4. The "smallest" of all left R-modules is the one having precisely one element,
namely an additive identity. We will consistently denote this module by (0).

المادة المعروضة اعلاه هي مدخل الى المحاضرة المرفوعة بواسطة استاذ(ة) المادة . وقد تبدو لك غير متكاملة . حيث يضع استاذ المادة في بعض الاحيان فقط الجزء الاول من المحاضرة من اجل الاطلاع على ما ستقوم بتحميله لاحقا . في نظام التعليم الالكتروني نوفر هذه الخدمة لكي نبقيك على اطلاع حول محتوى الملف الذي ستقوم بتحميله .