انت هنا الان : شبكة جامعة بابل > موقع الكلية > نظام التعليم الالكتروني > مشاهدة المحاضرة

# اسس 1 المحاضرة 1

الكلية كلية التربية للعلوم الصرفة     القسم  قسم الرياضيات     المرحلة 1
أستاذ المادة اسعد محمد علي حسين الحسيني       28/10/2018 13:03:55
A statement ends in a period, not a question mark or an e.xclamation point.
Thus (6) and (8) are not statements. Because (7) makes no sense, it cannot
be true or false. Similarly (9) is not a statement, even though it has the proper
form, until the variables x and y are replaced by meaningful terms.
Sentence (10) is deceiving; it looks like a statement. If it is a proposition,
then it is either true or false, but not both. Suppose it is true. Then what it
says is true, and it is false. But it cannot be both true and false. Hence (10)
cannot be true. Well, suppose (10) is false. Then what it says is false, and
(10) is not false, it is true. Again, it cannot be both true and false. Therefore,
(10) cannot be classified as either true or false. Hence it is not a statement.
Various ways exist for obtaining new statements from old ones. A few
of them are considered here.
2.2 DEFINITION. The statement p , read "not-p" and called the
negation of statement p, is defined to be the denial of statement p. That is,
p is false ifp is true, and p is true ifp is false.
We use truth tables to illustrate the truth values of statements, where
T stands for "true" and F for "false." Thus we have the truth table for
negation in Fig. 2.1. This table simply restates that p is false when p is true,
and p is true when p is false. Since it gives a picture of the truth values for
negation, the truth table may be more easily remembered than the verbal
definition.

المادة المعروضة اعلاه هي مدخل الى المحاضرة المرفوعة بواسطة استاذ(ة) المادة . وقد تبدو لك غير متكاملة . حيث يضع استاذ المادة في بعض الاحيان فقط الجزء الاول من المحاضرة من اجل الاطلاع على ما ستقوم بتحميله لاحقا . في نظام التعليم الالكتروني نوفر هذه الخدمة لكي نبقيك على اطلاع حول محتوى الملف الذي ستقوم بتحميله .