On some types of λ-continuous function in Bitopological Spaces

By
Yiezi kadham mahdi
Department of mathematics, college of education ,Babylon university
2007

Abstract:
[singal and singal ,[1968] introduced several properties of almost continuous mapping and [T.Noiri , 1990] introduced a weak form of faint continuity . [Hassna H. and sajda K. , 2005] introduced λ-continuity in bitopological spaces . the purpose of this paper is to introduce and study some types of λ-continuity in bitopological spaces with some relation between them.

Introduction:
The open set In the special bitopological space $(X\Psi,\Psi^\alpha)$ denoted by λ-open set and the collection of all λ-open sets forms a topological space on X denoted by Ψ, greater than Ψ . [N.Levine , 1961] introduced the concept of weak continuity as a generalized of continuity , later [Hussain ,1966] introduced almost continuity as another generalization and [Anderew and whitlesy , 1966]introduced the concept of closure continuity which is stronger than weak continuity .[singal and singal , 1968] introduced anew almost continuity which is different from that of hussain.the purpose of this paper is to further the study of the concept of strong λ-continuity and almost strongly λ-continuity ,faintly λ-continuity ,and weakly λ-continuity in bitopological spaces.

A function f: (X,Ψ,Ψ^α)→(Y,ξ,ξ^α) is weakly λ-continuous function at a point $x\in X$ if given any ξ-open set V in Y containing $f(x)$,there exist λ-open set U containing x such that $f(U)\subseteq cl_{\xi}(V)$.if the condition is satisfied at each $x\in X$ then f is said to be weakly continuous function. the function f is strongly λ-continuous function at $x\in X$ if given any ξ-open set V in Y containing $f(x)$,there exist λ-open set U containing x such that $f(cl_{\Psi}(U))\subseteq(V)$.if the condition is satisfied at each $x\in X$ then f is said to be strongly λ-continuous function, and it is called almost λ-continuous if for each point $x\in X$ and each ξ-open set V in Y containing $f(x)$ there exist λ-open set U in X containing x such that $f(U)\subseteq cl_{\xi}(V)$.the function f is said to be almost strongly λ-continuous if and only if for ach $x\in X$ and ξ-nbd V of $f(x)$ there exist λ-open set U containing x such that $f(cl_{\Psi}(U))\subseteq int_{\xi}(cl_{\xi}(V))$. A bitopological space (X,Ψ,Ψ^α) is called urysohn if for every $x\neq y$ in X there exist Ψ-open sets U,V in X such that $x\in U$ and $y\in V$ and $cl_{\Psi}(U)\cap cl_{\Psi}(V)=\emptyset$ and if (X,Ψ) is Urysohn space then (X, Ψ,Ψ^α) is also urysohn space..

From the definitions stated above ,one can easily obtain the following diagram

Strongly λ-continuous \Rightarrow λ-continuous \Leftrightarrow Faintly-continuous

↓

Almost strongly λ-continuous \Rightarrow almost λ-continuous \Rightarrow weakly λ-continuous
1- \(\lambda \)-continuous and strongly \(\lambda \)-continuous function

Theorem (1-1): let \(f : (X, \Psi, \Psi^\alpha_0) \rightarrow (Y, \xi, \xi^\alpha_0) \) be strongly \(\lambda \)-continuous and \(g : (Y, \xi, \xi^\alpha_0) \rightarrow (Z, \omega, \omega^\alpha_0) \) be \(\lambda \)-continuous function then \(gof \) is strongly \(\lambda \)-continuous.

Proof: exist by definition.

Theorem (1-2): if \(f : (X, \Psi, \Psi^\alpha_0) \rightarrow (Y, \xi, \xi^\alpha_0) \) is \(\lambda \)-continuous such that \(X \) is extremely disconnected then \(f \) is strongly \(\lambda \)-continuous.

Proof: let \(x \in X \) and \(V \) be \(\xi \)-nbd of \(f(x) \) in \(Y \), since \(f \) is \(\lambda \)-continuous there exist \(\lambda \)-open set \(U \) containing \(x \) such that \(f(U) \subseteq V \) and since \((X, \Psi) \) is extremely disconnected then \(f(\text{cl}_\Psi(U)) \subseteq V \) then \(f \) is strongly \(\lambda \)-continuous.

Theorem (1-3): A function \(f : (X, \Psi, \Psi^\alpha_0) \rightarrow (Y, \xi, \xi^\alpha_0) \) is \(\lambda \)-continuous if and only if \(\text{cl}_\Psi(f^{-1}(V)) \subseteq f^{-1}(\text{cl}_\xi(V)) \) for each \(\xi \)-open set \(V \) in \(Y \).

Proof: let \(V \) be \(\xi \)-open set in \(Y \), then \(f^{-1}(\text{cl}_\xi(V)) \) is \(\lambda \)-closed set in \(X \), now \(V \subseteq \text{cl}_\xi(V) \) then \(f^{-1}(V) \subseteq f^{-1}(\text{cl}_\xi(V)) \) and then \(\text{cl}_\Psi(f^{-1}(V)) \subseteq \text{cl}_\Psi(f^{-1}(\text{cl}_\xi(V))) = f^{-1}(\text{cl}_\xi(V)) \).

Conversely, let \(V \) be \(\xi \)-closed set in \(Y \) then \(\text{cl}_\Psi(f^{-1}(V)) \subseteq f^{-1}(\text{cl}_\xi(V)) = f^{-1}(V) \). now since \(f^{-1}(V) \subseteq \text{cl}_\Psi(f^{-1}(V)) \) then \(\text{cl}_\Psi(f^{-1}(V)) = f^{-1}(V) \) for \(f^{-1}(V) \) is \(\lambda \)-closed set. \(f \) is \(\lambda \)-continuous function.

Theorem (1-4): let \(f : (X, \Psi, \Psi^\alpha_0) \rightarrow (Y, \xi, \xi^\alpha_0) \) be strongly \(\lambda \)-continuous such that \(X \) is regular space and \(g : (X, \Psi, \Psi^\alpha_0) \rightarrow (X \times Y, \Psi \times \xi, \Psi^\alpha \times \xi^\alpha) \) be the graph mapping given by \(g(x) = (x, f(x)) \) for each \(x \in X \) then \(g \) is strongly \(\lambda \)-continuous.

Proof: let \(x \in X \) and let \(w \) be \(\Psi \times \xi \)-open set in \(X \times Y \) containing \(g(x) \). then there exist \(\Psi \)-open set \(G \) in \(X \) and \(\xi \)-open set \(H \) in \(Y \) such that \(g(x) = (x, f(x)) \subseteq G \times H \), since \(X \) is regular space then there exist \(\Psi \)-open set \(B \) in \(X \) such that \(\text{cl}_\Psi(B) \subseteq G \). since \(f \) is strongly \(\lambda \)-continuous there exist \(\lambda \)-open set \(U \) containing \(x \) such that \(U \subseteq G \) and \(f(U) \subseteq H \). there for \(g(U) \subseteq \text{cl}_\Psi \times \text{cl}_\xi(H) \subseteq G \times H \subseteq w \) then \(g \) is \(\lambda \)-continuous.

Theorem (1-5): let \((X, \Psi, \Psi^\alpha_0) \rightarrow (Y, \xi, \xi^\alpha_0) \) be \(\lambda \)-continuous and \(g : (X, \Psi, \Psi^\alpha_0) \rightarrow (X \times Y, \Psi \times \xi, \Psi^\alpha \times \xi^\alpha) \) be the graph mapping given by \(g(x) = (x, f(x)) \) for each \(x \in X \) then \(g \) is \(\lambda \)-continuous.

Proof: let \(x \in X \) and let \(w \) be \(\Psi \times \xi \)-open set in \(X \times Y \) containing \(g(x) \) then there exist \(\Psi \)-open set \(G \) in \(X \) and \(\xi \)-open set \(H \) in \(Y \) such that \(g(x) = (x, f(x)) \subseteq G \times H \subseteq w \), since \(f \) is \(\lambda \)-continuous there exist \(\lambda \)-open set \(U \) containing \(x \) such that \(U \subseteq G \) and \(f(U) \subseteq H \). there for \(g(U) \subseteq G \times H \subseteq w \) then \(g \) is \(\lambda \)-continuous.

Definition (1-6): let \(f : (X, \Psi, \Psi^\alpha_0) \rightarrow (X, \Psi_A, \Psi^\alpha_A) \) be a function such that \(X \) is Urysohn space where \(A \subseteq X \) and \(f|A \) is the identity function on \(A \) then \(f \) is \(\lambda \)-retraction

Theorem (1-7): let \(A \) be a subset of \(X \) and \(f : (X, \Psi, \Psi^\alpha_0) \rightarrow (X, \Psi_A, \Psi^\alpha_A) \) be \(\lambda \)-retraction of \(X \) onto \(A \).\(f \) is \(\lambda \)-retraction if \(X \) is Urysohn space then \(A \) is \(\lambda \)-closed subset of \(X \).

Proof: suppose that there exist \(x \in \text{cl}_\Psi(A) / A \) since \(f \) is \(\lambda \)-retraction we have \(f(x) \neq x \) . since \(X \) is Urysohn space then there exist \(\lambda \)-open sets \(U, V \) such that \(x \in U \) and \(f(x) \in V \), \(\text{cl}_\Psi(U) \cap \text{cl}_\Psi(V) = \emptyset \). Let \(w \) be any \(\lambda \)-open set containing \(x \) then \(U \cap w \) is \(\lambda \)-open sets containing \(x \) and then \(\text{cl}_\Psi(U \cap w) \cap A = \emptyset \). Now since \(x \in \text{cl}_\Psi(A) \) then \(y \in \text{cl}_\Psi(U \cap w) \cap A \). since \(y \in A \), \(f(y) = y \in \text{cl}_\Psi(U) \) and hence \(f(y) \notin \text{cl}_\Psi(V) \), from that we get \(f(\text{cl}_\Psi(w)) \) is not contained in \(\text{cl}_\Psi(V) \) and this is contradiction.
2-λ-continuous function and weakly λ-continuous.

Theorem (2-1): If let $f: (X, \Psi, \Psi^\alpha) \rightarrow (Y, \xi, \xi^\alpha)$ is weakly λ-continuous such that (X, Ψ) extremely disconnected then $\text{cl}_\Psi(f^{-1}(V)) \subseteq f^{-1}(\text{cl}_\xi(V))$ for each ξ-open set V in Y.

Proof: Let V be ξ-open in Y, then $f^{-1}(\text{cl}_\xi(V))$ is λ-open in X and $f^{-1}(V) \subseteq f^{-1}(\text{cl}_\xi(V))$, then $\text{cl}_\Psi(f^{-1}(V)) \subseteq \text{cl}_\Psi(f^{-1}(\text{cl}_\xi(V)))$, since X is extremely disconnected $\text{cl}_\Psi(f^{-1}(V)) \subseteq f^{-1}(\text{cl}_\xi(V))$.

Theorem (2-2): A mapping $f: (X, \Psi, \Psi^\alpha) \rightarrow (Y, \xi, \xi^\alpha)$ is weakly λ-continuous if and only if $f^{-1}(V) \subseteq \text{int}_\Psi(f^{-1}(\text{cl}_\xi(V)))$.

Proof: Let f is weakly λ-continuous and V be ξ-open set in Y then $f^{-1}(\text{cl}_\xi(V))$ is λ-open in X, since $\text{int}_\Psi(f^{-1}(\text{cl}_\xi(V))) = f^{-1}(\text{cl}_\xi(V))$ then $f^{-1}(V) \subseteq f^{-1}(\text{cl}_\xi(V)) = \text{int}_\Psi(f^{-1}(\text{cl}_\xi(V)))$.

Sufficiency, let $x \in X$ and V be ξ-nbhd of $f(x)$ in Y then $x \in f^{-1}(V) \subseteq \text{int}_\Psi(f^{-1}(\text{cl}_\xi(V)))$ let $U = \text{int}_\Psi(f^{-1}(\text{cl}_\xi(V)))$ then U is λ-open set containing x and $f(U) \subseteq \text{cl}_\xi(V)$ and there for f is weakly λ-continuous.

Theorem (2-3): Let $f: (X, \Psi, \Psi^\alpha) \rightarrow (Y, \xi, \xi^\alpha)$ is weakly λ-continuous such that (Y, ξ) is extremely disconnected space then f is λ-continuous.

Proof: Let $x \in X$ and V be ξ-nbhd of $f(x)$, since f is weakly λ-continuous there exist λ-open set U containing x such that $f(U) \subseteq \text{cl}_\xi(V)$, since (Y, ξ) is extremely disconnected then $f(U) \subseteq V$ and then f is λ-continuous.

Theorem (2-4): Let $f: (X, \Psi, \Psi^\alpha) \rightarrow (Y, \xi, \xi^\alpha)$ is weakly λ-continuous such that (Y, ξ) is extremely disconnected space then f is almost λ-continuous.

Proof: See the proof of theorem (2-3)

III- λ-continuous function and almost λ-continuous.

Theorem (3-1): If the mapping $f: (X, \Psi, \Psi^\alpha) \rightarrow (Y, \xi, \xi^\alpha)$ is λ-continuous such that (X, Ψ) is extremely disconnected then $\text{cl}_\Psi(f^{-1}(V)) \subseteq f^{-1}(\text{cl}_\xi(V))$ for each ξ-open set V in Y.

Proof: Let V be ξ-open set in Y and since f is λ-continuous $f^{-1}(V)$ is λ-open in X, since we have that $f^{-1}(V) \subseteq f^{-1}(\text{cl}_\xi(V))$ and (X, Ψ) is extremely disconnected, there for $\text{cl}_\Psi(f^{-1}(V)) \subseteq f^{-1}(\text{cl}_\xi(V))$.

Theorem (3-2): Let $f: (X, \Psi, \Psi^\alpha) \rightarrow (Y, \xi, \xi^\alpha)$ is almost λ-continuous and (Y, ξ) extremely disconnected then f is λ-continuous function.

Proof: Let $x \in X$ and V be ξ-nbhd of $f(x)$, since f is almost λ-continuous there exist λ-open set U containing x such that $f(U) \subseteq \text{cl}_\xi(V)$, since $f(U) \subseteq \text{cl}_\xi(V)$ then $f(U) \subseteq \text{cl}_\xi(V)$.

Theorem (3-3): Let $f: (X, \Psi, \Psi^\alpha) \rightarrow (Y, \xi, \xi^\alpha)$ is almost λ-continuous $f^{-1}(V)$ λ-pen set in X for each regular -open set V (resp. semi- open set V) in Y.

Proof: Exist by definition.

Proposition (3-5): A function $f: (X, \Psi, \Psi^\alpha) \rightarrow (Y, \xi, \xi^\alpha)$ is almost λ-continuous if and only if $f^{-1}(V) \subseteq \text{int}_\Psi(f^{-1}(\text{int}_\xi(V)))$ for each ξ-open set V in Y.

Proof: Let f is almost λ-continuous and V is ξ-open set in Y then $f^{-1}(\text{int}_\xi(V))$ is λ-pen set in X and $V \subseteq \text{int}_\xi(\text{cl}_\xi(V))$ then we have that $f^{-1}(V) \subseteq f^{-1}(\text{int}_\xi(\text{cl}_\xi(V))) = \text{int}_\Psi(f^{-1}(\text{int}_\xi(\text{cl}_\xi(V)))$.

Sufficiency, let $x \in X$ and V be ξ-nbhd of $f(x)$ in Y then
\[x \in f^1(V) \subseteq \text{int}_\xi(f^{-1}(\text{int}_\xi(\text{cl}_\xi(V)))) \text{. let } U = \text{int}_\xi(f^{-1}(\text{int}_\xi(\text{cl}_\xi(V)))) \text{ then } f(U) \subseteq (\text{int}_\xi(\text{cl}_\xi(V)) \text{ there for } f \text{ is almost } \lambda \text{-continuous} .

Proposition(3-6): let \(f: (X,\Psi,\Psi^\alpha) \rightarrow (Y,\xi,\xi^\alpha) \) is almost \(\lambda \)-continuous then \(f^1(V) \) is \(\lambda \)-open set in \(X \) for each \(\xi \)-regular open set in \(Y \).

Theorem(3-7): almost \(\lambda \)-continuous function \(f: (X,\Psi,\Psi^\alpha) \rightarrow (Y,\xi,\xi^\alpha) \) such that \(Y \) is \(\xi \)-extremely disconnected is \(\lambda \)-continuous if and only if \(\text{int}_\xi(f^{-1}(\text{cl}_\xi(V))) \). let \(U = \text{int}_\xi(f^{-1}(\text{cl}_\xi(V))) \text{ then } U \subseteq f^{-1}(\text{cl}_\xi(V)) \text{ and then } f(U) \subseteq V \) we get \(f^1(V) = f^1(\text{cl}_\xi(V)) \).

Theorem(3-8) : let \(f: (X,\Psi,\Psi^\alpha) \rightarrow (Y,\xi,\xi^\alpha) \) is almost \(\lambda \)-continuous such that \(X \) is \(\Psi \)-extremely disconnected then \(f \) is almost strongly \(\lambda \)-continuous.

Example(3-9): let \(X = \{a,b,c,d\} \) and \(\Psi = \{X,\varnothing,\{a\},\{a,b\}\} \)
\(\xi = \{X,\varnothing,\{a\}\} \)\(\text{let } f: (X,\Psi,\Psi^\alpha) \rightarrow (Y,\xi,\xi^\alpha) \) defined by \(f(a) = f(b) = p \), \(f(c) = q \) then \(f \) is weakly \(\lambda \)-continuous but it is neither \(\lambda \)-continuous nor almost \(\lambda \)-continuous.

Example(3-10): let \(X = \mathbb{R} \) and \(\Psi = \text{co-countable topology} \) and \(Y = \{a,b\} \),
\(\xi = \{Y,\varnothing,\{a\}\} \)\(\text{let } f: (X,\Psi,\Psi^\alpha) \rightarrow (Y,\xi,\xi^\alpha) \) define by \(f(x) = a \) if \(x \in \mathbb{Q} \) and \(f(x) = b \) if \(x \in \mathbb{Q}^c \) then \(f \) is almost \(\lambda \)-continuous and \(\xi \)-continuous but not \(\lambda \)-continuous.

Definition(3-11): A function \(f: (X,\Psi,\Psi^\alpha) \rightarrow (Y,\xi,\xi^\alpha) \) is said to be faintly \(\lambda \)-continuous if for each \(x \in X \) and each \(\lambda \)-open set \(V \) containing \(f(x) \) there exist \(\Psi \)-open set \(U \) containing \(x \) such that \(f(U) \subseteq V \).

Lemma(3-12): if the function \(f: (X,\Psi,\Psi^\alpha) \rightarrow (Y,\xi,\xi^\alpha) \) is faintly \(\lambda \)-continuous and \(g: (Y,\xi,\xi^\alpha) \rightarrow (Z,\omega,\omega^\alpha) \) is strongly \(\lambda \)-continuous then \(g \circ f \) is strongly \(\lambda \)-continuous.

Lemma(3-13): if the function \(f: (X,\Psi,\Psi^\alpha) \rightarrow (Y,\xi,\xi^\alpha) \) is \(\lambda \)-continuous and \(g: (Y,\xi,\xi^\alpha) \rightarrow (Z,\omega,\omega^\alpha) \) is faintly \(\lambda \)-continuous then \(g \circ f \) is \(\lambda \)-continuous.
Theorem (3-14): if $f: (X,\Psi,\Psi^\alpha)\to(Y,\xi,\xi^\alpha)$ is faintly λ-continuous such that X is extremely disconnected then f is strongly λ-continuous (almost λ-continuous)

Proof: let $x \in X$ and V is ξ-open set containing $f(x)$ since f is faintly λ-continuous and V is λ-open set in Y there exist Ψ-open set U containing x such that $f(U) \subseteq V$, now since X is Ψ-extremely disconnected and U is λ-open set in X $f(cl_\Psi(U)) \subseteq V$ and there for f is strongly λ-continuous. similar argument uses to proof f is almost λ-continuous.

V-Super λ-continuous and completely λ-continuous

Definition (4-1): a mapping $f: (X,\Psi,\Psi^\alpha)\to(Y,\xi,\xi^\alpha)$ is super λ-continuous if and only if for each $x \in X$ and ξ-nbd V of $f(x)$ there exist λ-open set U in X such that $f(int_\Psi(cl_\Psi(U))) \subseteq V$.

Definition (4-2): a mapping $f: (X,\Psi,\Psi^\alpha)\to(Y,\xi,\xi^\alpha)$ is completely λ-continuous if and only if for each $x \in X$ and ξ-nbd V of $f(x)$ there exist Ψ-regular open set U in X such that $f(U) \subseteq V$.

From these definitions we obtain the following diagram

![Diagram showing relationships between continuous mappings](https://example.com/diagram.png)

Theorem (4-3): if the mapping $f: (X,\Psi,\Psi^\alpha)\to(Y,\xi,\xi^\alpha)$ is super λ-continuous such that (X,Ψ) is semi regular space then f is completely λ-continuous.

Proof: let $x \in X$ and V is ξ-nbd of $f(x)$, since f is super λ-continuous there exist λ-open set U in X such that $f(int_\Psi(cl_\Psi(U))) \subseteq V$ and since X is Ψ-semi regular space then $f(U) \subseteq V$ then f is completely λ-continuous.

Theorem (4-4): if the mapping $f: (X,\Psi,\Psi^\alpha)\to(Y,\xi,\xi^\alpha)$ is completely λ-continuous such that (X,Ψ) is extremely disconnected then f is almost strongly λ-continuous.

Proof: let $x \in X$ and V is ξ-open set containing $f(x)$, since f is completely λ-continuous there exist regular open set U containing x such that $f(U) \subseteq V$, since U is regular open then $f(U) \subseteq V \subseteq int_\xi(cl_\xi(V))$, also since X is Ψ-extremely disconnected then $f(cl_\Psi(U)) \subseteq int_\xi(cl_\xi(V))$.

Theorem (4-5): if the mapping $f: (X,\Psi,\Psi^\alpha)\to(Y,\xi,\xi^\alpha)$ is weakly λ-continuous such that (X,Ψ) is semi regular space and (Y,ξ) is extremely disconnected then f is super λ-continuous.

Proof: let $x \in X$ and V is ξ-open set containing $f(x)$, since f is weakly λ-continuous there exist λ-open set U containing x such that $f(U) \subseteq cl_\xi(V)$, now since X is Ψ-semi regular space and Y is ξ-extremely disconnected then $f(int_\Psi(cl_\Psi(U))) \subseteq V$ and then f is super λ-continuous.

References:

