Study of Optical Properties of (PVA-BaSO_4.5H_2O) Composites

Ziyyad S. Ahmed
Ministry of Science and Technology; Center of Ceramic

Ahmed Hashim
Babylon University, College of Education
Department of Physics, Iraq
E-Mail: ahmed_taay@yahoo.com

Baha H. Rabee
Babylon University, College of Education
Department of Physics, Iraq

Alaa Jewad
Babylon University, College of Agriculture
Department of Soil and Water, Iraq

Abstract

Composites consisting of a polyvinyl alcohol matrix and BaSO_4.5H_2O as a filler are designed. The optical properties were measured in the wavelength range from (190-850) nm. The experimental results showed that the absorption coefficient, extinction coefficient, refractive index and real and imaginary parts of dielectric constants are increasing with increase the addition of BaSO_4.5H_2O content.

Keywords: Polyvinyl alcohol, Optical constants, Composites.

Introduction

The physical properties of polymers may be affected by doping, the certain structural, mechanical, optical, electrical and magnetic properties of the selected polymer can be controllably modified owing to the type of the doping, concentration, and the way in which it penetrates and interacts with the chains of the polymer. Detailed studies of doped polymer with different dopant concentrations allow the possibility of choice of the desired properties[1]. Polyvinyl alcohol (PVA) is a polymer with several interesting physical properties, which are very useful in technical applications. PVA, as semi crystalline material, exhibits certain physical properties resulting from the crystal-amorphous interfacial effect[2]. Ahmed Hashim et al, 2011, studied the optical properties of the PVA- Al_2O_3 composites. Results show that the absorption coefficient, extinction coefficient, refractive index and real and imaginary parts of dielectric constants are increasing with increase Al_2O_3 concentrations [3]. This paper deals with results of the effect of BaSO_4.5H_2O on the optical properties of poly vinyl alcohol.