Proceedings of
The First International
Conference on Engineering
Sciences’ Applications, ICESA
24-25 /December/ 2014
First International Conference on Engineering Sciences’ Applications, ICESA

Supported by

- Ministry of Higher Education and Scientific Research
- Imam Hussein Holy Shrine Trust
- Imam Abbas Holy Shrine Trust
- Kerbala Governorate
- Kerbala Governorate Council
- Kerbala Centre for Studies and Researches
- Engineering Consulting Bureau/ University of Kerbala
- The National Group
Contents

Welcome to 1st ICESA ... 4
Conference Program .. 5
Authors’ CVs ... 11
Reviewers .. 28
Mechanical Engineering Papers ... 31

Adsorption of Co^{2+} and Ni^{2+} from Aqueous Solution on Different Nano Montmorillonite Types (Majid Hayati-Ashtiani1, Hadi Azimi2) .. 32

Morphological and Structural Characteristics of Swelling and Nonswelling Nanostructured Montmorillonite (Hadi Azimi1, Majid Hayati-Ashtiani2) .. 56

Study of Nickel Removal on Raw and Acid-activated Nano-Structure Montmorillonite (Zahra Ashouri Mehranjani1, Mehran Rezaei2, Majid Hayati-Ashtiani3) .. 74

Physiochemical Characterization of Bentonite Clays for Oil Well Drilling Fluids (Masoomeh Bakhshi Mejdar1, Majid Hayati-Ashtiani2, Mohammad Reza Mozdian Fard3*) .. 94

Experimental Study of Transient Forced Convection Heat Transfer Nanofluid in Annular Duct (Ahmed H. Ali1 and Tahseen A. Al-Hattab2) .. 105

Experimental Investigation of a Heat Pipe Heat Exchanger (HPHE) Performance in Air-Conditioning Systems (M. Muhsen1, W. Mohammad2, A. Karamallah3) .. 119

Combined Cycle Plant (Dr. Raoof M. Radhi) ... 139

Robust Control Design of Variable Speed Wind Turbine under Parametric Uncertainty (Dr. Emad Q. Hussien) .. 155

Hyperelastic Constitutive Modelling for Fiber-Reinforced Rubber Materials (Asst. Prof. Dr. Mohsin Noori Hamza1, Mahmood Shakir Nima3) .. 170

Cognitive Neural Trajectory Tracking Controller Design for Mobile Robot (Asst.Prof.Dr.Maufak Ali Tawfik1, Asst.Prof.Dr.Ahmed Sabah Al-Araj2andBasim Rheem Sadiq3) .. 186

Phases Monitoring System of the Oil Wells (Dr. Dhirgham A.H. Al-khafaji1, Mustafa A. Kadhim Al-Kizwini2) .. 197

Application of Nanostructured Conducting Polymer Film in Fabrication of Electronic Nose Based on Chemiresistors Array Sensor (Naader Alizadeh, Mohsen Babaee, Mohammad Sadegh Alizadeh, Ahmad Mani-Varnosfaderani) .. 204

Numerical Study of Thermal Performance for Solar Heating System (Dr. Audai Hussein Al-Abbas) .. 216

Theoretical and Numerical Study of Natural Frequency Investigation for Orthotropic Unidirectional and Woven Hyper Composite Materials Beam (Dr.Muhammad Al-Wailly) .. 231

Numerical Simulation of Combined Convection of Cu-H_{2}O Nanofluid in an Inclined Lid-Driven Enclosure with a Localized Heat Source (Ahmed Kadhim Hussein1, Sameh E. Ahmed2 and Farshid Fathinia3) .. 254

Drifting Dynamic Characteristics Due to Effect of Heating Load (Husam A. Kareem1, Prof. Dr. Muhsin J. Jweeq2, Prof. Dr. Shaker S. Hassan3) .. 268

Numerical Simulation of Thermal Performance of Variable Conductance Cylindrical Heat Pipe Using Nanofluid (Hassanain Ghani Hameed1, Prof. Dr. Abudl-Muhsin A. Rageb3) .. 288
Investigation of Finned Thermosyphon (Prof. Dr. Karima Esmail Amori¹, Dr. Mohanad Lateef Abdullah¹) .. 307

Structural and Morphology Studies of Nanocomposite Materials (Prof. Dr. Fadhil Attiya Chyad⁎, Asst. Prof. Dr. abed Al-Raheem Kadhem#, Asst. Lec. Auday Abed Muhatlif+) ... 327

Three Dimensional Finite Element Analysis (Dr. Abdul Kareem F. Hassan¹, Alyaa Sh. Hashim²) .. 345

CIVIL Engineering Papers .. 361

Simulating the Impacts of Groundwater Pumping on Dibdibba Aquifer in Kerbala Province (Omran I.Mohammed¹, Sumayah A. Al-din Majeed² and Waqed H. Hassan³) .. 362

Evaluation Pedestrian Safety at Un Signalized T- Intersection on Urban Area Using Traffic Conflict Technique (Sahar S.Hadi, Raeda K. Ali, Hayder A. Ashour) ... 382

Characterization of Cement Kiln Dust Behavior in the Sorption of Heavy Metal from Aqueous Solutions (Abbas H. Sulaymon¹, Ayad A. H. Faisal¹ and Qusey M. Khaliefa²) 393

The Use of Clay Brick Waste for Internal Curing in Concrete (Dr. Laith Sh. Rasheed² and Laith Mohammed-Ridha Mahmmod³) .. 406

Effect of Sunlight (Solar Radiation) on Evaporation and Temperature of Fresh Concrete (Asst. Lect. Mahmoud H. Abdulrazzaq¹(1) Prof. Dr. Shakir Ahmed Salih²(1)) .. 418

A Study of the Effect of Using Additives on Some Properties of Gypsum (Prof. Dr. Nada Mahdi Fawzi¹, Ass. Lec. Hadeel Khalid Awad²) .. 432

Effect of Plastic Optical Fibers on Properties of Translucent Concrete Boards (Prof. Dr. Shakir Ahmed Salih¹, Assist.Prof.Dr. Hasan Hamodi Joni² and Waqed H. Hassan³) ... 453

Proposing Transportation Modes for Effective Tourism Management in City of Kerbala (Sedigheh Vakilly¹, Ehsan Ramezanii², Ghased Ashtijou³, Roozbeh Mohammadi⁴, Samira Dibaj⁵) ... 467

A Proposed Hexagonal – Cylindrical Specimens Relationship of Concrete (Alyaa Hussein Mohammed¹, Marawan Mohammed Hamid², Marwah Sami Abduljabbar³) .. 499

Artificial Neural Networks for Predicting Characteristics of CIR Mixes after Long-Term Curing (Seyed Mahmoud Dibaj¹, Behroz Saghafi², Roohollah Noori³ and Payam Daie⁴) .. 516

Hydraulic Characteristics of Flow through Monosized Gravel (Fadhil Mohammed Al-Mohammed, Ph.D) ... 527

Analysis of Thick Square Plates on Two-Parameter Elastic Foundation (Riyadh J. Aziz¹, Adel A. Al-Azzawi and Tuqa W. Ahmed³) ... 541

Estimation of Axle Load Spectra for Mechanistic-Empirical Pavement Design in New Brunswick (Hayder Abbas Ashour Al-Araza¹) .. 566

The Best Expansion Ratio for Castellated Steel Beams Based on the Upper Bound Criterion (Mr. Maher K. Abbas¹ and Prof. Dr. Haiitham H. Muteb²) .. 583

Development of Predictive Models for the Resilient Modulus of Asphalt Concrete Mixtures (Dr. Amjad H. K. Albayati¹(1) Dr. ShakirAL- Busultan²(2) Sahar S. Hadi³(3)) ... 597

Evaluation of Cationic Emulsified Asphalt Paving Mixtures by Moisture Sensitivity Tests (Dr. Hasan. H. Al-Baidhani, Assist. Lecturer Hussein Hamel Zghair) .. 617
Investigate Compressive Strength for Insulated and Non-Insulated Concrete under the Effect of Thermal Load (Ridha hameed Majeed, mohsin obaid muhi, Mahmoud eaifan)

The Effect of Earthquake Characteristics on Seismically Isolated Buildings of Variable Geometric Configurations with and without Shear Walls (Dr. Haider S. AL-Jubair, Dr. Fareed H. Majeed)

Residential Trip Demand Forecasting: A Regression-Based Approach Using Observed Trip Rate Data (Dr. Firas Hasan Alwan Asad)

Effect of Burning by Fire Flame on Some Mechanical Properties of Reactive Powder Concrete (Zainab Sabah Rasoul, Dr. Mohammed Mansour Kadhum)

Pavement Management using Cost-Effective Data Collection Sensors (V. Khalifeh, A. Golroo)

Shear Strengthening Behavior of Light Weight Aggregate Concrete Beams with Near Surface Mounted Using Carbon Fiber Reinforced Polymer Bars (Ali Hameed Naser Al-Mamoori)

Climate Responsive Building Design in Iraqi Environment Context (Ahmed Hasson, Oula S. Hassan)

Analysis of Earthquake Records from Badra and Kirkuk Seismographic Stations (Prof. Dr. Adnan Falih Ali, Majed Ashoor Khalaf)

Electrical and Electronics Engineering Papers

Extraction of Very Low Frequency Signals (Saad A. Hasan)

Design and Analysis of Environmental Monitoring System Using Wireless Sensor Networks (Syed Akhtar Imam, Vibhav Kumar Sachan)

Experimental Study of Wave Shape and Frequency of the Power Supply on the Energy Efficiency of Hydrogen Production by Water Electrolysis (Dhafeer M. H. Al-Hasnawi, Haroun A. K. Shahad)

Automated Car Airbag System Using Human Face Detection (Hussain Fadhel Hamdan Jaafar and Qais Kareem Omran Al-Gayem)

New Current-Mode MISO-Type Universal Filter Configurations Using Single FDCCII and Minimum Passive Components (Kasim K Abdalla)

Design of CMOS IR-UWB Transmitter (Hussein Ali Hamza, Dr. Haydar M. Al-Tamimi)

Analysis and Simulation of Force Control Linear Actuator with Spring in Series and its Driving System For Below Knee Amputees (Dhirgaam A. Kadhim)

Comprehensive Design and Implementation of a MPPT Controller for a PV Module Based on dSPACE Microcontroller (Ali J. Mahdi)

Design and Implementation of Hybrid Intelligent Systems Based on FPGA (Dr. Hanan A. R. Akkar)

Wearable Sierpinski Dragon Fractal Patch Antenna for RFID Applications (Ghufran M. Hatem, Ali J. Salim and Jawad K. Ali)

Automatic Digital Modulation Classification Using FFT (Ivan A. Hashim, Jafar Wadi Abdul Sadah and Thamir R. Saeed)

Disturbance Analysis in Wind Power System Connected with 132kV Grid Based on Intelligent Techniques (Dr. Kanaan A. Jalal & Ahmed Najem Abdalameer)
Welcome to 1st ICESA

Welcome to the First International Conference on Engineering Sciences’ Applications (ICESA). Excellences, distinguished delegates, ladies, gentlemen, on behalf of the conference organizing committee, it gives us great pleasure to welcome you all. We are so grateful because you have accepted our invitation to convene this conference here in Kerbala.

The conference programme is organized into paper presentation sessions and exhibition breaks to elucidate the scope of the conference in knowledge exchange between experts in different fields. This event provides a useful networking arena, which enables delegates to make new national and international contacts, bridge the gap between the various parties and help transfer technology from research into practice.

We hope that the present delegates will engage only to fruitful debates in order to make this conference productive and relevant. Conference sessions will be held in the college of engineering, AL-Mudhafein campus. We are extremely fortunate to have speakers and delegates from many countries including (Iran, India, U.K and Malaysia), for them we would like to express our thanks.

The conference committee wishes to express their special thanks to Ministry of Higher Education and Scientific Research, and Kerbala University for their continuous help and support. Sponsoring organizations, especially, Kerbala Center for Studies and Researches/ Imam Hussain Holey Shrine, and Imam Abbas Holey Shrine.

We are aware of the tremendous efforts made by all researchers, reviewers and committees, as the conference covers a wide range of very interesting items relating to engineering theories and applications. We are confident that the First International Conference on Engineering Sciences’ Applications will be a successful one, and all participants will gain purposeful knowledge which will be useful to Iraq, Iran, and other countries especially the Islamic countries.

Professor Dr. Sabah Rasoul Al-Jabiri
Conference Director

Professor Dr. Moneer Hameed Tolephih
President of Kerbala University
Conference Program
Day One: Wednesday 24 Dec 2014

Morning Session
Venue: Imam Al-Hassan (peace be upon him) Hall in Al-Abbas Holy Shrine.
Chairman: Prof. Dr. Riyad H. Al-Anbari /Dean of Building and construction Dept.UOT, Iraq

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00</td>
<td>Registration</td>
</tr>
<tr>
<td>10:00</td>
<td>Conference Opening</td>
</tr>
<tr>
<td>10:05-10:10</td>
<td>Holy Quran</td>
</tr>
<tr>
<td>10:10 – 10:20</td>
<td>Welcome by the Conference Director Professor Dr Sabah Rasoul Al-Jabiri</td>
</tr>
<tr>
<td>10:20 – 10:30</td>
<td>Welcome by the Conference Supervisor Professor Dr Moneer H.Tolephih</td>
</tr>
<tr>
<td>10:30-10:40</td>
<td>Welcome by the Minister of Higher Education and Scientific Research, Dr. Hussein Al-Shehristani</td>
</tr>
<tr>
<td>10:40-11:30</td>
<td>Keynote speaker Lecture: Nanotechnology in future Computers (Quantum Computers), Prof. Dr. Mudarr A. Abduasattar, Ministry of Sciences and Technology</td>
</tr>
<tr>
<td>11:30-2:00</td>
<td>Prayer and Lunch, Al-Abbas Holy Shrine</td>
</tr>
<tr>
<td>2:00-2:30</td>
<td>Movement to the College of Engineering at the Al-Mudhafin Campus</td>
</tr>
<tr>
<td>2:30-2:55</td>
<td>Refreshment and Exhibition</td>
</tr>
</tbody>
</table>

Afternoon Session2: Civil Engineering Applications
Venue: Hall One, Civil Engineering Department
Chairman : Prof. Dr. Shakir Ahmed Salih/ UOT, Iraq
Register : Assistant Prof. Dr. Laith Sh. Resheed/UOK, Iraq

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
</table>
| 3:00 | C40 لدراسة تأثير استخدام المضافات على بعض خواص الجص
M.M. هديل خالد عواد، أ.د. ندى مهدي فوزي الجيلاوي |
| 3:15 | C30 THE BEST EXPANSION RATIO FOR CASTELLATED STEEL BEAMS
BASED ON THE UPPER BOUND CRITERION
Mr. Maher K. Abbas, Prof. Dr. Haitham H. Muteb |
| 3:30 | C41 Effect of plastic optical fiber on properties of Translucent Concrete Boards
Prof. Dr. Shakir Ahmed Salih, Assist.Prof.Dr. Hasan Hamodi Joni, Safaa Adnan Mohamed |
| 3:45 | C27 Characterization of cement kiln dust behavior in the sorption of heavy metal
from aqueous solutions
Abbas H. Sulaymon, Ayad A. H. Faisal and Qusey M. Khaliefa |
| 4:00 | C46 Effect of Burning by Fire Flame on Some Mechanical Properties of Reactive Powder Concrete
Zainab Sabah Rasoul, Dr. Mohammed Mansour Kadhum, University of Babylon
- College of Engineering |
| 4:15 | C36 A Proposed Hexagonal – Cylindrical Specimens Relationship of Concrete
Alyaa Hussein Mohammed, Marawan Mohammed Hamid, Marwah Sami Abduljabbar |
| 4:45 | C56 Stability of Foundations due to Under Planning Dewatering Process
Dr. Haider M. Mekkiyah, Abdul Karim M. Abdul Razzak |
| 5:00 | C39 Sun Light (Solar Radiation) Effect on Evaporation and Temperature of Fresh Concrete
Asst. Lect. Mahmoud H. Abdulrazzaq, Prof. Dr. Shakir A. Salih |
Afternoon Session 3: Civil Engineering Applications

Venue: Hall Two, Civil Engineering Department
Chairman: Assistant Prof. Dr. Ali Khodaii/ AmirKabir University, Iran
Register: Dr. Raid R. Al-Muhanna/ UOK, Iraq

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Presenter(s)</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>C50</td>
<td>Climate Responsive Building Design in Iraqi Environment Context</td>
<td>Ahmed Hassan, Mechanical Engineering Department, College of Engineering, Nahrain University</td>
<td>3:30 – 3:45</td>
</tr>
<tr>
<td>C3</td>
<td>Proposing Transportation Modes for Effective Tourism Management in City of Karbala</td>
<td>Sedigheh Vakilly, Ehsan Ramezani, Gharem Ashtijou, Roozbeh Mohammadi4, Samira Dibaj5</td>
<td>3:45 – 4:00</td>
</tr>
<tr>
<td>C35</td>
<td>تأثير درجات الحرارة على المقاومة النوعية للحمأة المنشطة</td>
<td>A.M.D. Widad Dhiab, M.D. Zinab El-Sebaa, M.D. Gharem Ashtijou, Engineer Sadek Ahmed, Engineer Zaki Al-Sheikh</td>
<td>4:00 – 4:15</td>
</tr>
<tr>
<td>C2</td>
<td>Analysis of Thick Square Plates on Two-parameter Elastic Foundation</td>
<td>Riyadh J. Aziz1, Adel A. Al-Azzawi and Tuqa W. Ahmed3</td>
<td>4:15 – 4:30</td>
</tr>
<tr>
<td>C31</td>
<td>The Effect of Earthquake Characteristics on Seismically Isolated Buildings of Variable Geometric Configurations with and without Shear Walls</td>
<td>Dr. Haider S. Al-Jubair, Mr. Fareed H. Majeed</td>
<td>4:30 – 4:45</td>
</tr>
<tr>
<td>C48</td>
<td>Residential Trip Demand Forecasting: A Regression-Based Approach Using Observed Trip Rate Data</td>
<td>Dr. Firas Hasan Alwan Asad</td>
<td>4:45 – 5:00</td>
</tr>
</tbody>
</table>

Afternoon Session 4: Mechanical Engineering Applications

Venue: Hall Three, Mechanical Engineering Department
Chairman: Prof. Dr. Mohammad M. Aghdam/ AmirKabir University, Iran
Register: Assistant Prof. Dr. Mohammed h. Abood/ UOK, Iraq

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Presenter(s)</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>M4</td>
<td>Adsorption of Co2+ and Ni2+ from Aqueous Solution on Different Nano Montmorillonite Types</td>
<td>Hadi Azimi, Majid Hayati-Ashtiani</td>
<td>3:00 – 3:15</td>
</tr>
<tr>
<td>M5</td>
<td>Morphological and Structural Characteristics of Swelling and Nonswelling Nanostructured Montmorillonite</td>
<td>Majid Hayati-Ashtiani, Hadi Azimi</td>
<td>3:15 – 3:30</td>
</tr>
<tr>
<td>M10</td>
<td>Numerical Study of Thermal Performance for Solar Heating System</td>
<td>Audai Hussein Al-Abbas</td>
<td>4:00 – 4:15</td>
</tr>
<tr>
<td>M44</td>
<td>Three Dimensional Finite Element Analysis of Wire Drawing Process</td>
<td>Dr. Abdul Kareem F. Hassan, Alyaa Sh. Hashim</td>
<td>4:45 – 5:00</td>
</tr>
</tbody>
</table>
Afternoon Session 5: Mechanical Engineering Applications

Venue: Hall Four, Mechanical Engineering Department
Chairman: Prof. Dr. Arkan k. Ali/ UOT, Iraq
Register: Assistant Prof. Dr. Abdu-karim Al-Hamadani/ UOK, Iraq

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Presenter(s)</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>M16</td>
<td>Robust Control Design of Variable Speed Wind Turbine Under Parametric Uncertainty</td>
<td>Dr. Emad Q. Hussien</td>
<td>3:00 – 3:15</td>
</tr>
<tr>
<td>M30</td>
<td>Cognitive Neural Trajectory Tracking Controller Design for Mobile Robot</td>
<td>Dr. Moafaq Ali Tawfeq, Dr. Ahmed Sabah Al – Araji and Basim Raheem Sadeq</td>
<td>3:15 – 3:30</td>
</tr>
<tr>
<td>M32</td>
<td>Hyperelastic Constitutive Modelling for Fiber-Reinforced Rubber Materials</td>
<td>Assist. Prof. Dr. Mohsin Noori Hamzah, Mahmood Shakir Nima</td>
<td>3:30 – 3:45</td>
</tr>
<tr>
<td>M35</td>
<td>Theoretical and Numerical Study of Natural Frequency Investigation for Orthotropic Unidirectional and Woven Hyper Composite Materials Beam</td>
<td>Dr. Muhannad Al-Waily</td>
<td>3:45 – 4:00</td>
</tr>
<tr>
<td>M29</td>
<td>Drifting Dynamic Characteristics Due to Effect of Heating Load For Aluminum Alloy 7075 T6</td>
<td>Husam A. Kareem, Prof. Dr. Muhsin J. Jweeg, Prof. Dr. Shaker S. Hassan</td>
<td>4:00 – 4:15</td>
</tr>
<tr>
<td>M40</td>
<td>Structural and Morphology studies of nanocomposite materials</td>
<td>Prof. Dr. Fadhil Attiya Chyad, Asst. Prof. Dr. Abd Al-Raheem Kadhem, Asst. Lec. Auday Abd Muhatlif</td>
<td>4:15 – 4:30</td>
</tr>
</tbody>
</table>

Afternoon Session 6: Electrical Engineering Applications

Venue: Hall Five, Civil Engineering Department
Chairman: Prof. Dr. Asaam M. Abdulbaqi/ UOM, Iraq
Register: Dr. Ali J. Mahdi

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Presenter(s)</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>E25</td>
<td>Design and Implementation of Hybrid Intelligent Systems Based on FPGA</td>
<td>Assist. Prof. Dr. Hanan A. R. Akkar</td>
<td>3:15 – 3:30</td>
</tr>
<tr>
<td>E27</td>
<td>Automatic Digital Modulation Classification Using FFT</td>
<td>Ivan A. Hashim, Jafar Wadi Abdul Sadah, Thamir R. Saeed</td>
<td>3:45 – 4:00</td>
</tr>
<tr>
<td>E28</td>
<td>Disturbance Analysis in Wind Power System Connected with National Grid based on Intelligent Techniques</td>
<td>Dr. Kanaan A. Jalal, Ahmed Najem Abdalameer</td>
<td>4:00 – 4:15</td>
</tr>
<tr>
<td>E11</td>
<td>Automated Car Airbag System Using Human Face Detection</td>
<td>Hussain F. H. Jaafar1, and Qais K. O. Al-Gayem</td>
<td>4:15 – 4:30</td>
</tr>
</tbody>
</table>
Workshop: Research and Studies to Solve the Infrastructure and Transportation problems of Karbala City
Venue: Madinate Al-Za’arin
Chairman: Assistant Prof. Dr. Mohammed A. Al-Saraj / UOB, Iraq
Register: assistant Prof. Zwhair Al-Jawaheri , UOK, Iraq

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:30-7:55</td>
<td>Registration</td>
</tr>
<tr>
<td>8:00</td>
<td>Workshop Opening</td>
</tr>
<tr>
<td>8:00-8:05</td>
<td>Holy Quran</td>
</tr>
<tr>
<td>8:05-8:15</td>
<td>Welcome by the Director of Kerbala Center for Studies and Research</td>
</tr>
<tr>
<td>8:15-8:30</td>
<td>The high Demand to develop the infrastructure facilities of Karbala City</td>
</tr>
<tr>
<td>8:30-9:30</td>
<td>Discussion</td>
</tr>
<tr>
<td>9:30-9:40</td>
<td>Recommendation and final report</td>
</tr>
<tr>
<td>9:45</td>
<td>Closing the workshop</td>
</tr>
</tbody>
</table>

Day Two: Thursday 25 Dec 2014
Morning Session7: Civil Engineering Applications
Venue: Hall One, Civil Engineering Department
Chairman: Prof. Dr. Nada M. Fauzi
Register: Dr. Hussein A. Al-Hamami/UOK, Iraq

<table>
<thead>
<tr>
<th>Session</th>
<th>Time</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>C43</td>
<td>9:00-9:15</td>
<td>م. د. صبيحة فرحان , م. د. احسان عباس جاسم</td>
</tr>
<tr>
<td>C1</td>
<td>9:15-9:30</td>
<td>Simulating the Impacts of Groundwater Pumping on Dibdibba Aquifer in Karbala Province</td>
</tr>
<tr>
<td>C13</td>
<td>9:30 – 9:45</td>
<td>Hydraulic Characteristics of Flow through Monosized Gravel</td>
</tr>
<tr>
<td>C25</td>
<td>9:45 – 10:00</td>
<td>Estimation of Axle Load Spectra for Mechanistic-Empirical Pavement Design in New Brunswick</td>
</tr>
<tr>
<td>C51</td>
<td>10:00 – 10:15</td>
<td>Development of Predictive Models for the Resilient Modulus of Asphalt Concrete Mixtures</td>
</tr>
<tr>
<td>C37</td>
<td>10:15– 10:30</td>
<td>Clay Brick Waste as Internal Curing Agent in Normal Weight Concrete</td>
</tr>
<tr>
<td>C55</td>
<td>10:30– 10:45</td>
<td>Pavement Management using Cost-Effective Data Collection Sensors</td>
</tr>
<tr>
<td>C49</td>
<td>10:45– 11:00</td>
<td>Experimental study of insulated and non-insulated concrete behavior under the effect of thermal load</td>
</tr>
<tr>
<td>C19</td>
<td>11:00-11:15</td>
<td>Shear Strengthening Behavior of Lightweight Aggregate Concrete Beams with Near Surface Mounted Using Carbon Fiber Reinforced Polymer Bars</td>
</tr>
</tbody>
</table>
C17 Analysis of Earthquake Records from Badra and Kirkuk Seismographic Stations
Prof. Dr. Adnan Falih Ali, Majed Ashoor Khalaf
11:15-11:30

C14 ARTIFICIAL NEURAL NETWORKS FOR PREDICTING CHARACTERISTICS OF CIR MIXES AFTER LONG-TERM CURING
Seyed Mahmoud Dibaj, Behrooz Saghafi, Roohollah Noori and Payam Daie
11:30-11:45

Morning Session 8: Mechanical Engineering Applications
Venue: Hall Three, Mechanical Engineering Department
Chairman: Prof. Dr. Abdulhassan Karamallah
Register: Assistant Prof. Dr. Abbas S. Sharif/ UOK, Iraq

M6 Study of Nickel Removal on Raw and Acid-activated Nano-structure Montmorillonite
Zahra Ashouri Mehranjani 1, Mehran Rezaei 2*, Majid Hayati-Ash tiani 3
9:00 - 9:15

M7 Physicochemical Characterization of Bentonite Clays for Oil Well Drilling Fluids
Masoomeh Bakhshi Mejdar 1, Majid Hayati-Ashtiani 2, Mohammad Reza Mozdian Fard 3
9:15 – 9:30

M. Muhsen 4, W. Mohammad 5, A. Karamallah 6
9:30 – 9:45

M42 NUMERICAL INVESTIGATION OF FINNED THERMOSYPHON
Prof. Dr. Karima Esmail Amori, Mohanad Lateef Abdullah
9:45 – 10:00

M36 Numerical simulation of combined convection of Cu-H2O nanofluid in an inclined lid-driven enclosure with a localized heat source
Ahmed Kadhim Hussein, Sameh E. Ahmed, and Farshid Fathinia
10:00 – 10:15

M23 The Phases Monitoring System of the Oil Wells
Asst. Prof. Dr. Dhirgham A.H. Al-khafaji, Mustafa A. Kadhim Alkizwini (2)
10:15 – 10:30

M37 Application of Nanostructured Conducting Polymer Film in Fabrication of Electronic Nose Based on Chemiresistors Array Sensor
Naader Alizadeh*, Mohsen Babaei, Mohammad Sadegh Alizadeh, Ahmad Mani-Varnosfaderani
10:30 - 10:45

M12 Combined Cycle Plant "The Future Solution for Iraq Electricity Production"
Dr. Raoof M. Radhi
10:45 - 11:00
Morning Session

9:00 – 9:15

Guest Speaker

9:15 – 9:30

E23 Analysis on Modeling and Simulation Force Control Linear Actuator with Spring in Series and its Driving System For Below Knee Amputees

Dhiraam A. Kadhim

9:30 – 9:45

E7 Experimental Study of Wave Shape and Frequency of the Power Supply on the Energy Efficiency of Hydrogen Production by Water Electrolysis

Dhafer M. H. Al-Hasnawi¹, Haroun A. K. Shahad²

9:45 – 10:00

E24 Comprehensive Design and Implementation of a MPPT Controller for a PV Module based on dSPACE Microcontroller

Ali J. Mahdi

10:00 – 10:15

E13 New Current-Mode MISO-Type Universal Filter Configurations Using Single FDCCII and Minimum passive components

Kasim K Abdalla¹

10:15 – 10:30

E6 Design and Analysis of Environmental monitoring system Using Wireless Sensor Networks

Syed Akhtar Imam¹, Vibhav Kumar Sachan²

10:30 – 10:45

E2 A Proposed Filter for Low Frequency Signals

S. A. Hasan

10:45 – 11:00

E21 Design of CMOS IR-UWB Transmitter

Fadhil Mohammed Al- Hussein Ali Hamza, Dr. Haydar M. Al-Tamimi

Register: Dr. Riadh Mowad/ UOK, Iraq

Afternoon Session

10:00 – 10:15

Holy Quran

2:00-2:05

Speech of Shaikh Abd Al-Mahdi Al-Karbala’i

2:05-2:20

Awards’ Distribution for the selected papers

2:20-2:40

Conference Final Report

2:40-2:50

Conference closing speech, Prof. Dr. Sabah Rasoul Al-Jabiri

2:50-3:00
Authors’ CVs

Dr. Haitham Hassan Muteb
B.Sc.-M.Sc.-Ph.D.
- Professor and Consultant Engineer
- With B.Sc.-M.Sc.-and Ph.D. degrees in Civil Engineering.
- having more than 25years’ experience worked on range of projects in different locations,
- Lecturer in Iraqis Universities (Babylon University, University of Technology, Baghdad University and University of Karbala).

Maher Kheder Abbas
Academic Qualification:
- (2012-2014) M.Sc. researcher in civil engineering/structures, university of Babylon.

Safaa Adnan Mohamed
Highway and Transportation Engineering Department, University of Al-Mustansiriyah
Marawan Mohammed Hamid
Iraq- Baghdad
Since 2012 when I got my master's degree in engineering and construction materials to the present time I do my teaching at the University of Technology, Department of Building and Construction Engineering, Construction Engineering Branch. The title and my guest Assistant Lecturer.

Mahmood Hafidh Abdulrazzaq
1. M.Sc. in structural materials (concrete properties) from the college of Engineering/ Al Mustansiria University.
2. B.Sc. in Building and construction from the University of Technology. (1984).
3. B.A in Translation from the college of Arts/ Al Mustansiria University (2000).

Ass. Prof. Dr. Hasan Hamodi Joni Al-baidhani
Academic Qualifications:
B.Sc. Degree in civil engineering in AL-Rasheed College/ University of Technology /1988
M.Sc. Degree in Civil Engineering/Highway Engineering- in AL-Rasheed College/University of Technology /1995
Ph.D. Degree in Highway Engineering in University of Technology/2006

Name : Ass. Lecturer Hussein Hamel Zghair
Academic Qualifications
2. 2010-2012 M.Sc. in Building & Construction Engineering Specialized in Building Material Engineering/University of Technology.
Hayder Abbas Ashour Al-Araza
Masters of Engineering (M.Eng.), Transportation Engineering May 2012
University of New Brunswick, CANADA
Master of Science (M.Sc.), Highway and Airport Engineering June 2001
University of Technology- Baghdad, Iraq
Bachelor of Science (B.Sc.), Building and Construction Engineering June 1998
University of Technology- Baghdad

Asst. Lect. Sahar S. Hadi Al Neham
Sahar S. Hadi Al Neham is assistant lecture in the civil department of AL- Furat AL- Awsat Technical University
She awarded a M.Sc 2005 from Technology University.
She is a Ph.D Student stage, highway and pavement engineering She has 4 researches published.

Raeda Kh. Ali
Masters of Engineering (M.Eng.), Transportation Engineering May 2012
University of New Brunswick, Canada Fredericton, NB, Canada
Master of Science (M.Sc.), Highway and Airport Engineering June 2000, University of Technology-Iraq Baghdad, Iraq
Higher Diploma, Building and Construction Engineering Jan 1997, University of Technology-Iraq Baghdad, Iraq
Bachelor of Science (B.Sc.), Surveying Engineering June 1992, University of Baghdad Baghdad, Iraq
Assistant Prof. Dr. Adel Abdul-Ameer Al-Azzawi
Place and Date of Birth: Baghdad ; 15-Sep.-1970
Nationality: IRAQI
Marital Status: Married
Current position: Academic Staff/Civil Eng. Dept./College of Eng. Nahrain University, Baghdad, Iraq
Specialization: Civil Engineering (Structures)
Baghdad University B.Sc. 1993 Civil Engineering
Nahrain University M.Sc. 1996 Structural Engineering
Baghdad University Ph.D. 2001 Structural Engineering

Dr. HAIDER SAAD YASEEN AL-JUBAIR
Ph. D. Geotechnical Engineering, September 2002, University of Baghdad, Iraq.
Dean of the College of Engineering, 2003-2005, University of Tikrit, Iraq.
Dean of the College of Engineering, 2006-2008, University of Thi-Qar, Iraq.
- Assistant Professor, 1998- till now,
Member of the ISSMGE, No. IRQ1300017.

Fareed H. M. Al-Mosawi
M.Sc. – Structural Engineering 2002.
Assistant Lecturer in Basrah University- College of Engineering-Department of Civil Engineering from 2005 till now.
Ph.D. Student.

Dr. Firas Hasan Alwan Asad
I am male; married; was born in Baghdad (Iraq) in 1975. I had my first degree in civil engineering in 1997 (University of Kufa); H.Diploma in structural design by computers in 1998 and MSc in highways and airports in 2001 (Uni. of Technology); and a PhD in highway engineering in 2013 (Uni. of Salford, UK).
Dr. Majid Hayati
assistant professor at University of Kashan, Iran
Graduated in Ph.D at 2010 in Chemical Engineering. Published 8 ISI papers, 6 international conference papers, 1 national conference paper and 2 national patents, Advisor of 1 Ph.D dissertation, supervisor of 4 M.Sc. theses, scientific interests is bentonite clays.

Hmed Hammodi Ali
EDUCATION
- B.Sc in Mechanical Engineering, Kufa University, 2003
- M.Sc in Mechanical Engineering, Power Mechanics, Kufa University, 2006
Assistant Lecturer in Department of Automobiles Engineering at Technical College-Najaf from 2007 up to now. The teaching experience includes engineering courses such as design projects, engineering and mechanical drawing and calculus I.

Dr. Audai Hussein Kadhum Al-Abbas
-B.Sc. degree in Mechanical Engineering from University of Technology/ Baghdad in 1997.
-M.Sc. degree in Applied Mathematics in thermal engineering (fluid mechanics) from University of Technology/ Baghdad in 2002.
-Ph.D. degree in Mechanical Engineering / Thermal Engineering / Energy from Swinburne University of Technology/ Australia in 2012.
Hassanain Ghani Hameed Al-Hussaini
Department of Automobiles Engineering
Technical College - Najaf
Foundation of Technical Education
EDUCATION
• BS.c in Mechanical Engineering, Kufa University, 2000.
• MS.c in Mechanical Engineering, Thermal Mechanics, Kufa University, 2004.
• Ph.D. Student, Mechanical Engineering, Thermal Mechanics, Basrah University, Supervisor: Prof. Dr. Abd-Muhsin A. Rageb

Asst. Prof. Dr. Mohsin Noori Hamzah
Head of Automotive Engineering
University of Technology
Mechanical Engineering Department
PUBLISHED BOOK(S): ONE BOOK
PUBLISHED PAPERS: 17

Emad Qasem Hussein
Place and Data of Birth: Kerbala 1962
Present Post: Lecher
Education: PhD. Mechanical Engineering
Position held: Head of Mechanical Department 2012-2013
Head of Petroleum and Petrochemical Engineering 2014

Mahmood Shakir Nima
MSc Student – Mechanical Engineering – Applied Mechanics
University of Technology
Mechanical Engineering Department
Nationality: Iraqi
Place & Date of Birth: Baghdad, 10-July-1989
Education: B.Sc. in Mechanical Engineering, 2012
Dr. Muhannad Lafta Shlakae Al-Waily
Location Work: University of Kufa/Faculty of Engineering Mechanical Engineering Department
Profession: Lecture in Kufa University-Faculty of Engineering Mechanical Engineering Department.
Ph.D. In Mechanical Engineering/ College of Engineering/ Alnahrain University/Iraq.
M.Sc. In Mechanical Engineering/ College of Engineering/University of Kufa/Iraq
B.Sc. In Mechanical Engineering/ College of Engineering/University of Kufa/Iraq

Dr. Fadhil Attiya Chyad
Professor of Industrial Technology, Chief Researchers and Expert of Materials Science
Department of Engineering Materials, University of Technology
Published (130) papers, (3) Engineering Books, (2) patents
Supervised (30) Ph.D. and M.Sc.
Chief and member of (140) postgraduate committee

Dr. Hanan A. R. Akkar
Scientific Title: Assistant Professor (2002)
Degree obtained:- PhD (1998) in Electronic Engineering University of Technology Department of Electrical Engineering
Current workplace: - University of Technology Department of Electrical Engineering Electronics Eng. Division.
Number of publications: Seventy-three papers in area of artificial neural networks, Genetic algorithm, Fuzzy logic, Swarm intelligent, FPGA, Switched capacitor, Nanotechnology based on electronics engineering.
Ghufran M. Hatem
received her B.Sc degree in Communications Technology from Najaf Technical College, Al-Najaf Al-Ashraf, Iraq in 2004. From 2004-2012, she was an engineer and a Lab Assistant at the same college. Currently, she is working to pursue her M.Sc degree in Microwave Engineering from the Department of Electrical Engineering, University of Technology, Iraq. Her fields of interests are microwave antenna miniaturization and design for RFID and wearable communication applications.

Ali J. Salim
was born in Baghdad, Iraq in 1975; he received the B. Sc. in Electrical Engineering and M. Sc. in Communication Engineering in 1999 and 2002 both from University of Baghdad, Iraq respectively and Ph.D in Communication Engineering from the University of Technology, Iraq in 2011. He has published many papers in international conferences and journals in the field of antenna miniaturization for MIMO applications and the design of compact passive microwave circuits.

Jawad K. Ali
He received his B.Sc and M.Sc degrees in 1979 and 1986 respectively from Al-Rasheed College for Science and Technology, Iraq. From 1989-1991, he joined a PhD study program at the Faculty of Engineering, Antonin Zapotocky Academy, (VAAZ), Brno, former Czechoslovakia. Since 2010, he has been a professor of microwave engineering at the University of Technology, Iraq. Currently, he is the deputy dean for postgraduate studies and scientific affairs at the Department of Electrical Engineering. His fields of interests are microwave antenna miniaturization and design, passive microwave circuits design and FPGA based system design. He has more than 90 published papers in local and international conferences and peer-reviewed journals. Prof. Ali is a Senior Member of IEEE and a Member of IET.
Mr. Ivan A. Hashim
has born in 1975 in Najaf, Iraq and he received the B.Sc. and M.Sc. Degree in electronics and communication engineering in 1997 and 2000 respectively from university of technology(UOT), department of electrical and electronic engineering, Baghdad, Iraq. He is working in (UOT) as a lecturer. His interested field of research is Digital Circuit Design and FPGA Design.

Jafar Wadi Abdul Sadah
was Born in Basrah, Iraq on January 9, 1956. He received the B.Sc. degree from University of Baghdad in 1977, the M.Sc. degree and Ph.D. degree from VAAZ Brno, Czechoslovakia in 1981 and 1984 respectively. He worked with military engineering college in Baghdad as a member of teaching staff. Currently, he is professor of electrical engineering at university of Baghdad college of engineering. His major interests are in digital signal processing, estimation and cryptography.

Thamir Rashed Saeed
Was Born in Baghdad, Iraq 1965. He received the B.Sc. and M.Sc. degree from military engineering college(MEC) in Baghdad in 1987 and 1994 respectively, and Ph.D. degree from AL-Rashed college of engineering and Secinec in Baghdad 2003. He worked with (MEC) in Baghdad as a member of teaching staff. From 2003 till now, he worked with the (UOT) in Baghdad as a member of teaching staff. His major interests are in digital signal processing, digital circuit design for DSP based on FPGA and Steganography.
Dr. Kanaan Ali Jalal
Organization/University: UOT
Department: Electrical Engineering
Position/Job Title: Faculty Member, Dean Assistant
Field of Interest: Electrical Power Systems, Renewable Energy Intelligent Systems

Hussain F. Jaafar
received the BSc degree in electrical engineering in 1981 from the University of Salahaddin, Iraq and the MSc degree in Electronic Engineering in 1984 from the University of Technology Baghdad, Iraq. He received the PhD degree in Communication and Signal Processing from the University of Liverpool, UK in 2012. His main areas of interest are biomedical image processing, pattern recognition, and computer vision. He has authored more than 15 papers in journals and conferences. Currently, he is a lecturer with the Electrical Engineering Department, University of Babylon, Iraq.

Qais Al-Gayem
received the BSc degree in Electrical and Electronic Engineering from Babylon University, and the MSc degree in Electronic Engineering from the University of Technology, Iraq, in 1999 and 2001, respectively. From 2002 to 2008, he worked as a lecturer in Electrical Department, Babylon University, Iraq. After that, he joined his PhD study in Engineering Department, Lancaster University, UK, and graduated in 2012. His research interests include built-in-self-test (BIST) of MEMS, health monitoring, and dependability in Bio-fluidic microsystems.
Waqed Hameed Hassan Al-Mussawy
Qualifications:
3. B.Sc. in Civil Engineering, 1999, University of Babylon, Iraq.

Sumayah Amal Al-din Majeed

FADHIL MOHAMMED DAHIR AL-MOHAMMED
Qualification:
BS: Iraq-University of Mosul-College of Engineering- water resources engineering-1986
M.Sc: Iraq-University of Mosul-College of Engineering- water resources engineering-1992
Ph.D: Iraq-University of Baghdad-College of Engineering- water resources engineering-2008

Laith Shakir Rasheed Al-Qarawee
Scientific Degree:- Assistant Prof
Date and place of Birth:- 19-06-1973, Iraq/Karbala
Job Title:- Head of civil engineering department
BSc., MSc:-Building& construction/ University of Technology/Iraq
PhD:- University of Baghdad, Iraq, Structural engineering
Published Papers:- 9
Laith Mohammed-Ridha Mahmmod
Scientific Degree:- Assistant Lecturer
Date and place of Birth:- 22-05-1987, Iraq/Baghdad
Job Title:- Assistant Lecturer in
Civil Engineering Department, Engineering College, Kerbala University.
BSc. :- Civil Engineering, University of Baghdad.
MSc. :- Construction Materials, University of Baghdad.
Published Papers:- 2
ACI- Iraq Chapter Member.

RIDHA HAMEED MAJEED
M.SC Chemical Engineering(MATERIAL ENGINEERING DEPARTMENT) / University of technology-Baghdad-Iraq, 1989
B.SC IN CHEMICAL ENGINEERING / University of technology-Baghdad-Iraq, 1986
EDUCATIONAL SECTOR
Lecturer , TECHNICAL INSTITUTE IN KARBALA / MASTERY OF HIGHER EDUCATION AND SCIENTIFIC RESEARCH / IRAQ
Muhsen Mahdi Muhsen Al-Silbi
Current workplace: University of Karbala – Engineering College – Mechanical Department
Certifications
BS.c & MS.c In mechanical engineering (Air conditioning & Refrigeration)
Ph.D student: Researcher in field of using heat pipes in Air conditioning systems under thesis title (Parallel Heat Pipes to Dehumidify a Humid Space), University of Technology/ Baghdad.

Dr. Ahmed Kadhim Hussein
is an assistant professor in Mechanical Engineering Department at University of Babylon , Iraq. He received his Ph.D. from University of Al-Mustansiriya in 2006. His research work concerns heat transfer, CFD, aerodynamics, nanotechnology , clean energy. He has published many papers in different local and international journals and conferences.

Asst. Prof. Dhirgham Al-Khafaji
Qualifications & Positions:
Currently works a cultural counsellor in Iraq's cultural attaché / India. He Has holds a PHD of Engineering Aerodynamic from (JMI) / New Delhi and PGDA from Sikkim Munpal University / India and has held several positions at the University of Babylon.

Asst. Prof. Dr. Amjad H. Khalil Albayati
Dr. Amjad H. Khalil Albayati is assistant professor in the civil engineering department of Baghdad University. He awarded a Ph.D in the highway and pavement engineering in 2006 from Baghdad University. he was the head of civil engineering department – engineering college – University of Baghdad for the period (2006-2007) also (jan 2014-jun2014).
Naader Alizadeh
serves as a Professor of Analytical Chemistry at Tarbiat Modarres University in the Chemistry Department (Tehran, Iran). His research activities include the synthesis (chemical and electrochemical) and characterization of nanostructure conducting polymers and their applications in chemical sensors (liquid and gas phases), microextraction methods, exchange kinetics, and complexation behaviors.

رووف محمد راضي حسين الموسوي
* شهادة بكالوريوس في الهندسة الميكانيكية/جامعة البصرة عام (1975)
* شهادة الماجستير في الهندسة الميكانيكية من جامعة نيوكاسل البريطانية عام (1979)
* شهادة الدكتوراه في الهندسة الميكانيكية/الاحتراق والطاقة من جامعة نيوكاسل البريطانية عام (1983)

Dhafeer Manee Hachim Sultan AL-Hasnawi
Iraq - the province of Najaf / Foundation of Technical Education
Al-Furat Al-Awsat Technical University
Technical Engineering College of Najaf
BSc. Mechanical Engineering - General Faculty of Engineering / Iraq 2000
MS. Mechanical Engineering - Power Faculty of Engineering / Iraq 2003
Ph.D. Basrah Mechanical Engineering - Power Faculty of Engineering / Iraq 2011
Kasim K. Abdalla

Received B.Sc. in electrical engineering and M.Tech. in Communication Engineering from Technical University, Baghdad, Iraq and Ph.D. from Jamia Millia Islamia, Delhi, India. He has been with Department of Electrical Engineering, Engineering College, and University of Babylon, Iraq since 2006. His research interests include electronic communications, analog signal processing and analog integrated circuit.

Dhirgaam Abdul Rahym Kadhim

Academic Qualification

-Bsc. : Baghdad University/ College of Engineering/1997
-Msc. : Baghdad University/ College of Engineering/2001
-Ph.D : Vladimir State University/college of Engineering/2011

Place of Work: University of Kerbala–College Of Engineering.

Dr. Ali Jafer Mahdi

Dr. Ali Jafer Mahdi Is currently a Head of Department and a Lecturer in Power Electronics & Electrical Machines at the Electrical & Electronic Engineering Department at Kerbala University. He has joined as a Lecturer at Kerbala University in October 2004. Prior to that, he was a Power & Machines Lecturer (November 1998 - August 2003) at the High Institute of Electrical Engineering, Sirte – Libya. Dr. Mahdi has received his Ph.D. from the University of Liverpool - UK focusing on Power Electronics Converters (PEC), Controlling of Wind Turbine Generator Systems (WTGS) and Photovoltaic Power Systems (PVPS).
Dr. Syed Akhtar Imam
Received the M. Sc. Engg degree from Aligarh Muslim University, Aligarh and PhD. degree in Electronics & Comm. Engg from Jamia Millia Islamia Central University, New Delhi, in 1998, and 2008, respectively. Since 1990, he has been part of Jamia Millia Islamia University, where he is Assistant Professor in the Department of Electronics and Communication Engineering. He has more than 100 publications in journals and conf. of repute. His current research interests are in the field of sensing technologies, electronic and biosensors, signal processing and digital circuits.

Dr. Vibhav Kumar Sachan
Received the B.Tech. (Hons.) degree in Electronics & Instrumentation Engg. from Bundelkhand Institute of Engineering & Technology, Jhansi, U.P., and M.Tech.(Hons.) degree in Digital Communication from Uttar Pradesh Technical University, U.P., in 2001, and 2006, respectively. He has completed his Ph.D. degree in Wireless Sensor Networks from Department of Electronics & Communication Engineering, Faculty of Engineering and Technology, Jamia Millia Islamia, Delhi, in 2014.

Saad Ahmed Hasan
Qualifications:
1) B.Sc.in electrical engineering / Al-Rasheed college/university of technology(Baghdad-Iraq)1996
2) M.SC. In Electrical Engineering and Electronics/Al-Rasheed college University of Technology (Baghdad-Iraq) 2002.
3) PhD Electrical Engineering and Electronics / Electronics (Microelectronics)/University of (Liverpool-UK) 2011.
د. صبح لطه فرحان
الشهادات الأكاديمية
1) دكتوراه تخطيط حضري / جامعة بغداد / 2012
2) ماجستير تخطيط حضري (الأول على الدورة) / جامعة بغداد / 2009
3) بكالوريوس هندسة معمارية / الجامعة التكنولوجية / 1993

احسان عباس جاسم
الشهادات الأكاديمية والاختصاص
1- دكتوراه تخطيط حضري وإقليمي / جامعة بغداد / 2013
 عنوان الاطروحة " النقل العام وعلاقته بالشكل الحضري "
2- ماجستير تخطيط حضري وإقليمي / جامعة بغداد / 2008
 عنوان الرسالة " العلاقة بين استعمالات الأرض ومنظومة النقل الحضري "
3- بكالوريوس هندسة مساحة / جامعة بغداد / 1995
 التخصص العام: تحليل النقل وتأثيره البنية الحضارية باستخدام نظم المعلومات الجغرافية.
4- التخصص الدقيق: التحليل الوظيفي لاستعمالات الأرض الحضرية والنقل
 باستخدام نظم المعلومات الجغرافية.
Reviewers

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Country</th>
<th>Email Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Riyadh Hasan Hadi</td>
<td>Technology</td>
<td></td>
<td>drtebadi@gmail.com</td>
</tr>
<tr>
<td>Dr. Shakir Faleh Shakir</td>
<td>Kerbala</td>
<td></td>
<td>s.f.al_busalan@uokerbala.iq</td>
</tr>
<tr>
<td>Dr. Raid Rahim adnan</td>
<td>Kerbala</td>
<td></td>
<td>raidalmuhanna@yahoo.com</td>
</tr>
<tr>
<td>Ihsaan Ali Ashaar Baf</td>
<td>Al-Nahrain</td>
<td></td>
<td>ishaarba@yahoo.com</td>
</tr>
<tr>
<td>Feriydon Moghadas Nejad</td>
<td>Iran</td>
<td></td>
<td>moghadas@aut.ac.ir</td>
</tr>
<tr>
<td>Dr. Mohammad Baqir</td>
<td>Mohammad Sadeq</td>
<td>Al-Nahrain</td>
<td>mbaqir_shedidy@yahoo.com</td>
</tr>
<tr>
<td>Dr. Ahmed Abdul Saheb</td>
<td>Mohammed Ali</td>
<td>Baghdad</td>
<td>drahmedali@yahoo.com</td>
</tr>
<tr>
<td>Qais Jwad</td>
<td>Technology</td>
<td></td>
<td>Jwd_ks@yahoo.com</td>
</tr>
<tr>
<td>Kazemi</td>
<td>Iran</td>
<td></td>
<td>kazemi@sharif.edu</td>
</tr>
<tr>
<td>Prof. Dr. Namer Alwash</td>
<td>Babylon</td>
<td></td>
<td>namer_aiwash@yahoo.com</td>
</tr>
<tr>
<td>Assist. Prof. Dr. Shaker Rasheed</td>
<td>Kerbala</td>
<td></td>
<td>laith.alqariwee@uokerbala.edu</td>
</tr>
<tr>
<td>Dr. Jawad Talib</td>
<td>Kerbala</td>
<td></td>
<td>JAWADT78@YAHOO.COM</td>
</tr>
<tr>
<td>Eskandari</td>
<td>Iran</td>
<td></td>
<td>eskandari@sharif.edu</td>
</tr>
<tr>
<td>Joghatae</td>
<td>Iran</td>
<td></td>
<td>joghatae@shari.edu</td>
</tr>
<tr>
<td>Prof. Dr. Shakir Ahmed Saleh</td>
<td>Babylon</td>
<td></td>
<td>professorshakir@yahoo.com</td>
</tr>
<tr>
<td>Dr. Musa Habib Jasem</td>
<td>Kerbala</td>
<td></td>
<td>dr.musahabib@gmail.com</td>
</tr>
<tr>
<td>Dr. Fadhil Mohammed</td>
<td>Dhaher</td>
<td>Furat Al-Awsat Kerbala</td>
<td>fmhmime@yahoo.com</td>
</tr>
<tr>
<td>Assist. Prof. Dr. Jabbar Albidhani</td>
<td>Babylon</td>
<td></td>
<td>bashes@ohio.edu</td>
</tr>
<tr>
<td>Salam Bash</td>
<td>Al-Mustansirya</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Mohammad Altufail</td>
<td>Babylon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Email</td>
<td>Country</td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--</td>
<td>--------------------</td>
<td></td>
</tr>
<tr>
<td>Dr. Hussain Alhamamy Kerbala</td>
<td>Alhamamy70@yahoo.com</td>
<td>Iraq</td>
<td></td>
</tr>
<tr>
<td>Dr. Angham e'z ald Ali Baghdad</td>
<td></td>
<td>Iraq</td>
<td></td>
</tr>
<tr>
<td>Dr. Ahmed Munem Hason Al-Nahrain</td>
<td>am_hasson@yahoo.com</td>
<td>Iraq</td>
<td></td>
</tr>
<tr>
<td>Dr. Wagheed Hameed Hassan Kerbala</td>
<td>waged2005@yahoo.com</td>
<td>Iraq</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Salih Alkhassaf Al-Basrah</td>
<td>alkhassafmustafa@yahoo.com</td>
<td>Iraq</td>
<td></td>
</tr>
<tr>
<td>Maleki Iran</td>
<td>smaleki@sharif.edu</td>
<td>Iran</td>
<td></td>
</tr>
<tr>
<td>Assit. Prof. Dr. Jamal abd al-sammad Al-Basrah</td>
<td>jamalsamad@yahoo.com</td>
<td>Iraq</td>
<td></td>
</tr>
<tr>
<td>Dr. Mohammed Ali Tawfiq Al-Mustansiriya</td>
<td>drmatawfiq@yahoo.com</td>
<td>Iraq</td>
<td></td>
</tr>
<tr>
<td>Dr. Ali Jafar Mahdi Kerbala</td>
<td>Ali.mahdi@uokerbala.edu.iq</td>
<td>Iraq</td>
<td></td>
</tr>
<tr>
<td>Dr. Firas Mohammed Ali Technology</td>
<td>firas@ieee.org</td>
<td>Iraq</td>
<td></td>
</tr>
<tr>
<td>Dr. Manal Alkendi Al-Nahrain</td>
<td></td>
<td>Iraq</td>
<td></td>
</tr>
<tr>
<td>Dr. Mahmood Shakir Babylon</td>
<td>mahmoud11957@yahoo.com</td>
<td>Iraq</td>
<td></td>
</tr>
<tr>
<td>Dr. Naser Hussain Al-Mustansiriya</td>
<td>Mohammed_alturfi@yahoo.com</td>
<td>Iraq</td>
<td></td>
</tr>
<tr>
<td>Jawad Radhi Mahmood Al-Basrah</td>
<td>Jawad.alamiri@uobasrah.edu.iq</td>
<td>Iraq</td>
<td></td>
</tr>
<tr>
<td>Assit. Prof. Dr. Firas Mahdi Muhsin Kerbala</td>
<td>firassalei1974@yahoo.com</td>
<td>Iraq</td>
<td></td>
</tr>
<tr>
<td>Mehdi Shabani Iran</td>
<td></td>
<td>Iran</td>
<td></td>
</tr>
<tr>
<td>Dr. Riyadh Moad Kerbala</td>
<td>riyadhmoad2004@yahoo.com</td>
<td>Iraq</td>
<td></td>
</tr>
<tr>
<td>Dr. Muayad krook Technology</td>
<td>muayadkrook@yahoo.com</td>
<td>Iraq</td>
<td></td>
</tr>
<tr>
<td>Dr. Jafar Ali Kadhim Technology</td>
<td>jakalanbary@yahoo.com</td>
<td>Iraq</td>
<td></td>
</tr>
<tr>
<td>Dr. Essam Mahmood al-Baki Al-Mustansiriya</td>
<td>embaki56@yahoo.com</td>
<td>Iraq</td>
<td></td>
</tr>
<tr>
<td>Dr. Mahmod Technology</td>
<td>drmahmood6@gmail.com</td>
<td>Iraq</td>
<td></td>
</tr>
<tr>
<td>Dr. Thamir Rashed Saed Technology</td>
<td>Thamir_rashed@yahoo.com</td>
<td>Iraq</td>
<td></td>
</tr>
<tr>
<td>Dr. Hussain Fadhil Hamdan Babylon</td>
<td>Hussain_engi@yahoo.com</td>
<td>Iraq</td>
<td></td>
</tr>
<tr>
<td>Dr. Hadi Tarish Ziboon Technology</td>
<td>haditarishziboon@yahoo.com</td>
<td>Iraq</td>
<td></td>
</tr>
<tr>
<td>Dr. Inaam Ibrahim Ali Technology</td>
<td>In2006aam@yahoo.com</td>
<td>Iraq</td>
<td></td>
</tr>
<tr>
<td>Assit. Prof. Dr. Hanan Akar Technology</td>
<td>Dr_hanauot@yahoo.com</td>
<td>Iraq</td>
<td></td>
</tr>
<tr>
<td>Ali Hassan Al-Mukhtar Technology</td>
<td>Janaq62004@yahoo.com</td>
<td>Iraq</td>
<td></td>
</tr>
<tr>
<td>Dr. Saad Kareem Shathir Technology</td>
<td></td>
<td>Iraq</td>
<td></td>
</tr>
<tr>
<td>Dr. Mohammed Hassan Abod Kufa</td>
<td></td>
<td>Iraq</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Email</td>
<td>Email</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---------------------------------</td>
<td>--------------------------------</td>
<td></td>
</tr>
<tr>
<td>Dr. Hassan Fetlawi Babylon</td>
<td>fetlawi@uobabylon.edu.iq</td>
<td>malmussawie@yahoo.com</td>
<td></td>
</tr>
<tr>
<td>Dr. Nagham Alwan Al-Mustansiriya</td>
<td>nagam75@yahoo.com</td>
<td>Dr. Nasir Al-Habobi Al-Nahrain</td>
<td></td>
</tr>
<tr>
<td>Dr. Sarmad Talib Najem Al-Nahrain</td>
<td>dr_sarmadalani@yahoo.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Ahmed Munem Hasson Al-Nahrain</td>
<td>dr_ahasson@yahoo.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Nada Sabah Salman Baghdad</td>
<td>nadaszubaidi@yahoo.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Emad GHasem Hussain Kerbala</td>
<td>emad_aishiomy@yahoo.com</td>
<td>Abd Alrahman Najem Al-Nahrain</td>
<td></td>
</tr>
<tr>
<td>Dr. Mushtagh Esmail Dhi-ghar</td>
<td>Mushtaq76h@yahoo.com</td>
<td>Adb.alrahman2011@yahoo.com</td>
<td></td>
</tr>
<tr>
<td>Dr. Salah Noori Kerbala</td>
<td>salahnoori@yahoo.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Abdulhassan abd karam Technology</td>
<td>Dr Abdulhassank@yahoo.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Abbass Sahi Kerbala</td>
<td>Abba.marem@yahoo.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Mohammed Wahab Kadhim Kerbala</td>
<td>Maljibory71@yahoo.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Adawiya Haider</td>
<td>adawiyahaidaier@yahoo.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assist.Prof. Dr. Jawad Kadhim Technology</td>
<td>jawadkad@yahoo.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Abdulhassan abd karam Technology</td>
<td>Dr_abdulhassank@yahoo.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Ahmed Ghasim Technology</td>
<td>Dr.ahmed56@yahoo.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Hussain Majeed Salih Technology</td>
<td>Hussein_maj@yahoo.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Raoof Mohammed Kadhim Kerbala</td>
<td>raoofkuny@gmail.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farhan Lafte Rashid Eng</td>
<td>Engfarhan71@gmail.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr.Hayder Nadhim Aziz Kerbala</td>
<td>Hyder078@yahoo.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Dhirgaam Abd-alraheem Kadhim Kerbala</td>
<td>dhirgaamk@yahoo.com</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Numerical Simulation of Combined Convection of Cu-H_2O Nanofluid in an Inclined Lid-Driven Enclosure with a Localized Heat Source
Ahmed Kadhim Hussein 1, Sameh E. Ahmed 2 and Farshid Fathinia 3

1 (Department of Mechanical Engineering, Babylon University, Iraq Email: ahmedkadhim7474@gmail.com), +964 7813769317
2 (Department of Mathematics, South Valley University, Egypt Email: sameh_sci_math@yahoo.com)
3 (Department of Mechanical Engineering, Universiti Teknologi Malaysia, Malaysia Email: ffarshid2@live.utm.my)

ABSTRACT
A numerical simulation of the combined convection flow in a rectangular inclined lid-driven enclosure filled with copper-water nanofluid has been performed. The upper and the lower walls are maintained at a cold temperature and the upper wall moves from left to right with uniform lid-driven velocity. A localized heat source is embedded on a region of the enclosure left sidewall, the right one is considered thermally insulated together with the remaining regions of the left sidewall. The effects of the governing parameters such as solid volume fraction, Richardson number, enclosure inclination angle and heat source effect are investigated. The results explain that the local Nusselt number decreases as the inclination angle and solid volume fraction increase. Comparisons with another published results are performed and a good agreements are found.

Keywords- combined convection, enclosure, laminar flow, localized heat source, nanofluid

1. Introduction
Nanofluids are a new kind of heat transfer fluids containing a small quantity of nano-sized particles (usually less than 100 nm) that are uniformly suspended in a liquid. They have received more attention as a new generation of heat transfer fluids in building heating, heat exchangers and automotive cooling applications, because of their excellent thermal performance. Various advantages of nanofluids applications include: heat transfer system size reduction, micro channel cooling and miniaturization of systems [1-2]. Various numerical and experimental studies on nanofluids in a lid-driven square or rectangular enclosures have been studied in the literature [3-10]. Kakac and Pramanjaroenki [11] presented an excellent review of convective heat transfer enhancement with nanofluids. Moreover, Mahmoudi et al. [12] studied numerically mixed convection flow and temperature fields in a vented square cavity subjected to an external copper-water nanofluid. The effects of solid volume fraction on the hydrodynamic and thermal characteristics had been investigated. Talebi et al. [13] investigated numerically mixed convection flows in a lid-driven square cavity utilizing copper–water nanofluid. They showed that at a given Reynolds number and Rayleigh number, solid concentration had a positive effect on heat transfer enhancement. Abu-Nada and
Chamkha [14] solved numerically the steady laminar mixed convection of a nanofluid made up of water and Al$_2$O$_3$ in a lid-driven inclined square enclosure.

It was found that the heat transfer mechanisms inside the cavity were strongly dependent on the Richardson number. Ghasemi and Aminossadati [15] numerically studied the mixed convection in a lid-driven triangular enclosure filled with a water–Al$_2$O$_3$ nanofluid. The results showed that the addition of Al$_2$O$_3$ nanoparticles enhanced the heat transfer rate for all values of Richardson number and for each direction of the sliding wall motion. Shahi et al. [16] executed a numerical investigation of mixed convection flows through a copper–water nanofluid in a square cavity with inlet and outlet ports. The results indicated that an increase in solid concentration caused to increase in the average Nusselt number at the heat source surface and a decrease in the average bulk temperature. A literature review indicates that the papers related with the combined convection in a lid-driven inclined enclosure subjected to a localized heat source using a nanofluid concept are very limited. However, the present paper can be considered as a continuous part of our first published paper deals with this subject (Hussein et al. [17]).

2. Mathematical Analysis

2.1 Problem geometry and the governing equations.

Fig.1 shows a schematic diagram of a two-dimensional inclined rectangular enclosure of height (H) and width (w). The fluid inside is a copper-water nanofluid. The nanofluid is assumed incompressible and the flow is assumed to be Newtonian, laminar and steady. It is assumed that the base fluid (i.e. water) and the nanoparticles are in thermal equilibrium state. The enclosure aspect ratio is represented by (A = w / H). The parameters B, D and Gr are considered fixed during the calculation at the values 0.4, 0.5 and 100 respectively. The solid volume fractions, (φ) have been varied from 0 % to 10 % with an increment of 5% while the enclosure inclination angle (Φ) is varied as 0°, 30°, 60° and 90° respectively. The Reynolds number is taken as (1≤ Re ≤100). The thermo-physical properties of the water and copper nanoparticles are given in Table 1. The upper and lower walls are kept to be cooled and the upper wall moves from left to right with uniform lid-driven velocity (U_p). The thermo-physical properties of both the base fluid and nanofluid are assumed to be constant except for the density variation, which is modeled using Boussinesq model. The dimensionless governing equations for the laminar and steady state mixed convection in terms of the stream function-vorticity formulation are given by Hussein et al. [17]:

$$
\frac{\partial^2 \Psi}{\partial X^2} + \frac{\partial^2 \Psi}{\partial Y^2} = -\omega
$$

$$
\frac{\partial}{\partial X} \left(\frac{\partial \Psi}{\partial Y} \right) - \frac{\partial}{\partial Y} \left(\frac{\partial \Psi}{\partial X} \right) = \frac{1}{\text{Re}} \frac{1}{(1-\phi)^{2.5} \left((1-\phi) + \phi \frac{\rho_{nf}}{\rho_f} \right)} \left(\frac{\partial^2 \Omega}{\partial X^2} + \frac{\partial^2 \Omega}{\partial Y^2} \right)
$$
\[+ R\tau (\phi (\frac{\beta_{nf}}{\beta_f}) + (1 - \phi)) \left(\frac{\partial \theta}{\partial X} \cos \Phi - \frac{\partial \theta}{\partial Y} \sin \Phi \right) \]

\[\frac{\partial}{\partial X} (\theta \frac{\partial \Psi}{\partial Y}) - \frac{\partial}{\partial Y} (\theta \frac{\partial \Psi}{\partial X}) = \frac{1}{Re \cdot Pr} \frac{k_{nf}}{k_f} \left(\frac{\rho c_p}{\nu} \right)_{nf} \left(\frac{\partial^2 \theta}{\partial X^2} + \frac{\partial^2 \theta}{\partial Y^2} \right) \]

These dimensionless governing equations have been obtained by employing the following non-dimensional variables as listed below:

\[X = \frac{x}{H} \quad Y = \frac{y}{H} \quad U = \frac{U}{p} \quad V = \frac{V}{U} \quad \Omega = \frac{\omega}{U \cdot \rho / H} \quad \Psi = \frac{\psi}{U \cdot \rho / H} \]

\[\theta = \frac{T - T_c}{\Delta T} \quad \Delta T = \frac{gH}{k_f} \quad Gr = \frac{g \beta \Delta T H^3}{\nu_f^2} \quad Pr = \frac{\nu_f}{\alpha_f} \quad Ri = \frac{Gr}{Re^2} \quad Re = \frac{U \cdot H}{\nu_f} \]

The non-dimensional boundary conditions are given by:

The bottom wall of the cavity is maintained at constant cold temperature:
at \(Y = 0 \) and \(0 \leq X \leq 1 \) \(\theta = 0 \), \(U = V = 0 \) \((5) \)

The top wall of the cavity is maintained at constant cold temperature and moves from left to right with uniform lid-driven velocity:
at \(Y = 1 \) and \(0 \leq X \leq 1 \) \(\theta = 0 \), \(U = 1 \), \(V = 0 \) \((6) \)

The lower part of the left vertical inclined side wall of the cavity is considered adiabatic:
at \(X = 0 \) and \(0 \leq Y < (D - 0.5B) \), \(U = V = 0 \), \(\frac{\partial \theta}{\partial X} = 0 \) \((7) \)

The heat source part of the left vertical inclined side wall of the cavity is considered as:
at \(X = 0 \) and \((D - 0.5B) \leq Y \leq (D + 0.5B) \), \(U = V = 0 \), \(\frac{\partial \theta}{\partial X} = \frac{k_f}{k_{nf}} \) \((8) \)

The upper part of the left vertical inclined side wall of the cavity is considered adiabatic:
at \(X = 0 \) and \((D + 0.5B) \leq Y \leq 1 \), \(U = V = 0 \), \(\frac{\partial \theta}{\partial X} = 0 \) \((9) \)
The right vertical side wall of the cavity is considered adiabatic:

at \(X = 1 \) and \(0 \leq Y \leq 1 \), \(U = V = 0 \), \(\frac{\partial \theta}{\partial X} = 0 \) \hspace{1cm} (10)

2.2 Local and average Nusselt number along the heat source surface

The local and average Nusselt numbers along the heat source surface can be written as Hussein et al. [17]:

\[
\text{Nu}_s (Y) = \frac{1}{\theta_s (Y)} \hspace{1cm} \text{(11)}
\]

\[
\text{Nu}_m = \frac{1}{B} \int_{D-0.5B}^{D+0.5B} \text{Nu}_s (Y)dY \hspace{1cm} \text{(12)}
\]

where, \(\theta_s (Y) \) is the dimensionless local temperature along the heat source

3. Numerical Scheme and Verification

Because of the non-linear interactions among the equations (1–3), solution for these equations with the boundary conditions (5–8) can be obtained numerically using finite difference method. During each axial step, the numerical evaluation is iterated until the relative errors of \(U, V \) and \(\theta \) at sequential iterations are less or equal \((10^{-6}) \). In order to choose the suitable grid for these calculations, an accuracy test using five sets of grids: \(31 \times 31, 41 \times 41, 61 \times 61, 81 \times 81, 101 \times 101 \) is made. This test is clearly shown in Table 2. A \((61 \times 61) \) uniform grid is found to meet the requirements of both the grid independency study and the computational time limits. The numerical method is found to be suitable and gives results that are very close to the numerical results obtained by Aminossadatia and Ghasemi [5] and Mansour et al. [18] and with using the copper-water nanofluid. Table 3 shows a good agreement is reached between the present results and the results obtained by Aminossadatia and Ghasemi [5] and an excellent agreement between the present results and the results obtained by Mansour et al. [18]. These comparisons give confidence in the numerical results to be reported subsequently.

4. Results and Discussion

The streamlines (on the left) and isotherms (on the right) in the enclosure for the water-copper nanofluid are shown in Figs. (2–5) for various inclination angles, solid volume fractions and Richardson numbers. It can be seen from Fig. 2 that, the fluid moves from the inclined left sidewall where the heat source exists towards the right side one and as a result forms a clockwise single circular vortex with \(\psi_{\text{min,nf}} = -0.1032864 \) and \(\psi_{\text{min,f}} = -0.1024746 \) at \(\varphi =0\% \) and \(\varphi =10\% \) when the Richardson number (\(\text{Ri} = 0.05 \)) . When the solid volume fraction increases, the circulation
intensity decreases as a result of small energy transport through the flow related with the low movement of the nanoparticles. The high quantities of nanoparticles volume fraction cause a significant increase in the fluid viscosity and as a result causes the velocity to be decrease. From the other hand, when the Richardson number increases from Ri = 0.05 and 10 to Ri = 100, the effect of buoyancy forces becomes more dominant which causes the circulation vortex to become more stronger and extends deeply inside the inclined cavity. While, when the Richardson number is low, the effect of the lid-driven is dominant and the streamlines are greatly concentrated to each other. In this case the flow is driven by the forced convection mechanism. Moreover, for low values of Richardson number (Ri = 0.05), the existence of the heat source has no clear effect on the streamlines. Also, it can be observed that the isotherms are accumulated adjacent to some part in the left inclined sidewall of the enclosure where the heat source exists. Furthermore, it can be noticed, that as the Richardson number increases from Ri = 0.05 and 10 to Ri = 100, the isotherms begin to distribute uniformly parallel to the cold top and bottom walls and approximately take the horizontal shape in the center of the inclined enclosure indicating that convection is the dominant mechanism for heat transfer in the cavity. While, the distribution of the isotherms are considered random and confuse inside the inclined enclosure when the Richardson number is low. Moreover, it can be observed from the figure that the temperature distribution for both base fluid and nano fluid increase with increasing the Richardson number and their maximum values increase from \(\theta_{\text{max,of}} = 0.2308517, \theta_{\text{max,f}} = 0.2867012 \) when \(\text{Ri} = 0.05 \) to \(\theta_{\text{max,of}} = 0.4185633, \theta_{\text{max,f}} = 0.5444783 \) when \(\text{Ri} = 100 \). This behavior is due to the strong effect of convection when the Richardson number increases. From the other side, the addition of nanofluid to the base fluid leads to reduce the temperature distribution and this reduction increases as the solid volume fraction range increases. Since as the solid volume fraction increases, less heat is transferred into the system and thus the temperature of the entire enclosure decreases. Also, Figs.2 and 3 illustrate the effect of the enclosure inclination angle on the streamlines and isotherms contour when the enclosure inclination angles are taken as 30° and 90° respectively. It can be observed that as the inclination angle increases, the vortex exhibits more clear extension inside the inclined cavity and occupies most of the cavity zone. When the inclination angle reaches to 90°, the vortex begins to separate into two rotating vortices and rotates with a slow rate. From the other hand, no important effect of increasing the enclosure inclination angle can be noticed on the isotherms contour. Fig. 4 explains the profiles of the local Nusselt number along the heat source with the variations of the inclination angle when the Richardson number (Ri = 10), \(A=2 \) and \(\phi = 10 \% \). It can be observed that as the inclination angle increases, the local Nusselt number along the heat source decreases due to the reduced value of velocity. This is due to the weak effect of natural convection heat transfer due to slight effect of buoyancy force while the forced convection heat transfer contribution is significant. Therefore, the cavity inclination angle can be used as a control parameter for fluid flow and heat transfer. Fig.5 demonstrates the profiles of the local Nusselt number along the heat source with the variations of the Richardson number when the enclosure inclination angle (Φ) is 30° and aspect ratio (A = 2). The local Nusselt number along the heat source decreases with addition of nanoparticles (\(\phi = 10 \% \)) compared with base fluid (\(\phi = 0 \% \)). This is due to the increase of the thermal boundary layer
thickness, since it increases rapidly with increasing the volume fraction of nanoparticles. This rapid increase causes to reduce the velocity which leads as a result to reduce the thermal energy transport through the fluid. Therefore, the temperature gradient at the heat source position has a slight effect and causes a reduction in the local Nusselt number values.

5. Conclusions

The following conclusions can be drawn from the results of the present work.

1. The existence of a heat source at the inclined left sidewall of the enclosure causes the vortex to extend vertically.

2. Increasing the solid volume fraction decreases the circulation intensity of the flow and reduces the stream function values.

3. The circulation vortex size increases and extends to the central region of the enclosure when the Richardson number increases.

4. When the Richardson number increases, the isotherms are accumulated near the heat source position and it changes their shape from the random and irregular distribution to approximately uniform distribution.

5. By adding the nanofluid to the base fluid, a clear reduction in the temperature distribution can be detected.

6. The local Nusselt number along the heat source decreases as the enclosure inclination angle increases and the opposite is valid.

7. The local Nusselt number along the heat source decreases with addition of nanoparticles compared with base fluid.

8. No significant effect is noticed in the isotherms when the enclosure inclination angle increases.

References

Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>The enclosure aspect ratio which is represented by A = w / H</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Dimensionless length of the heat source (b / H)</td>
<td></td>
</tr>
<tr>
<td>c_p</td>
<td>Specific heat at constant pressure</td>
<td>J / kg. °C</td>
</tr>
<tr>
<td>D</td>
<td>Dimensionless distance of heat source from the bottom wall (d / H)</td>
<td></td>
</tr>
<tr>
<td>Gr</td>
<td>Grashof number</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>Gravitational acceleration</td>
<td>m/s²</td>
</tr>
<tr>
<td>H</td>
<td>Height of the enclosure</td>
<td>m</td>
</tr>
<tr>
<td>k</td>
<td>Thermal conductivity</td>
<td>W / m. °C</td>
</tr>
<tr>
<td>Nu_av</td>
<td>Average Nusselt number</td>
<td></td>
</tr>
<tr>
<td>Nu_s</td>
<td>Local Nusselt number</td>
<td></td>
</tr>
<tr>
<td>Pr</td>
<td>Prandtl number</td>
<td></td>
</tr>
<tr>
<td>q</td>
<td>Heat generation per unit area</td>
<td>W/m²</td>
</tr>
<tr>
<td>Re</td>
<td>Reynolds number</td>
<td></td>
</tr>
<tr>
<td>Ri</td>
<td>Richardson number</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>Temperature</td>
<td>°C</td>
</tr>
<tr>
<td>U</td>
<td>Dimensionless velocity component in x-direction</td>
<td></td>
</tr>
<tr>
<td>U_p</td>
<td>Uniform lid-driven velocity of the moving top wall</td>
<td>m/s</td>
</tr>
<tr>
<td>u</td>
<td>Velocity component in x-direction</td>
<td>m/s</td>
</tr>
<tr>
<td>V</td>
<td>Dimensionless velocity component in y-direction</td>
<td></td>
</tr>
<tr>
<td>v</td>
<td>Velocity component in y-direction</td>
<td>m/s</td>
</tr>
<tr>
<td>w</td>
<td>Width of the enclosure</td>
<td>m</td>
</tr>
<tr>
<td>X</td>
<td>Dimensionless Coordinate in horizontal direction</td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>Cartesian coordinate in horizontal direction</td>
<td>m</td>
</tr>
<tr>
<td>Y</td>
<td>Dimensionless Coordinate in vertical direction</td>
<td></td>
</tr>
<tr>
<td>y</td>
<td>Cartesian coordinate in vertical direction</td>
<td>m</td>
</tr>
</tbody>
</table>

Greek Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>Thermal diffusivity</td>
<td>m²/s</td>
</tr>
<tr>
<td>β</td>
<td>Coefficient of thermal expansion</td>
<td>K⁻¹</td>
</tr>
<tr>
<td>θ</td>
<td>Dimensionless temperature</td>
<td></td>
</tr>
</tbody>
</table>
Nomenclature Continued

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔT ΔT</td>
<td>Reference temperature difference</td>
<td></td>
</tr>
<tr>
<td>Ψ</td>
<td>Dimensional stream function</td>
<td>m²/s</td>
</tr>
<tr>
<td>Ψ′ Ψ′</td>
<td>Dimensionless stream function</td>
<td></td>
</tr>
<tr>
<td>ω</td>
<td>Dimensional vorticity</td>
<td>1/sec</td>
</tr>
<tr>
<td>Ω</td>
<td>Dimensionless vorticity</td>
<td></td>
</tr>
<tr>
<td>Φ Φ</td>
<td>Enclosure inclination angle</td>
<td>degree</td>
</tr>
<tr>
<td>φ</td>
<td>Volume fraction of nanofluid</td>
<td></td>
</tr>
<tr>
<td>ν</td>
<td>Kinematic viscosity of the fluid</td>
<td>m²/s</td>
</tr>
<tr>
<td>ρ</td>
<td>Density</td>
<td>kg/m³</td>
</tr>
</tbody>
</table>

Subscripts

- **c**: Cold
- **f**: Fluid
- **nf**: Nano fluid particle
- **s**: Heat source surface
Fic. 1 schematic of the enclosure

Table 1 Thermo-physical measured properties of water and copper nanoparticles

(Hussein et al. [17]).

<table>
<thead>
<tr>
<th>Property</th>
<th>Pure water</th>
<th>Copper (Cu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rho (\text{kgm}^{-3})$</td>
<td>997.1</td>
<td>8933</td>
</tr>
<tr>
<td>$C_p (\text{Jkg}^{-1}\text{K}^{-1})$</td>
<td>4179</td>
<td>385</td>
</tr>
<tr>
<td>$k (\text{Wm}^{-1}\text{K}^{-1})$</td>
<td>0.613</td>
<td>401</td>
</tr>
<tr>
<td>$\beta (\text{K}^{-1})$</td>
<td>21×10^{-5}</td>
<td>1.67×10^{-5}</td>
</tr>
</tbody>
</table>
Table 2 Grid independency study for Cu-water nanofluid ($A = 1, B = 0.4, D = 0.5$
$Ri = 1, \phi = 0^0, \varphi = 10\%$)

<table>
<thead>
<tr>
<th>Grid</th>
<th>ψ_{max}</th>
<th>Nu_{av}</th>
</tr>
</thead>
<tbody>
<tr>
<td>31x31</td>
<td>-0.1019090</td>
<td>7.097252</td>
</tr>
<tr>
<td>41x41</td>
<td>-0.1018446</td>
<td>7.115013</td>
</tr>
<tr>
<td>61x61</td>
<td>-0.1017011</td>
<td>7.140493</td>
</tr>
<tr>
<td>81x81</td>
<td>-0.1015776</td>
<td>7.140493</td>
</tr>
<tr>
<td>101x101</td>
<td>-0.1013410</td>
<td>7.140493</td>
</tr>
</tbody>
</table>

Table 3 Comparisons of Nu_{av} for Cu-water nanofluid with another published works
($\varphi = 10\%, B = 0.4, D = 0.5, Ra = 10^3$).

<table>
<thead>
<tr>
<th>Work</th>
<th>Nu_{av}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mansour et al. [18]</td>
<td>5.459225</td>
</tr>
<tr>
<td>Present study</td>
<td>5.459225</td>
</tr>
</tbody>
</table>
\[\psi_{\min, nf} = -0.1032725, \psi_{\min, f} = -0.1024538. \]
\[\theta_{\max, nf} = 0.2318571, \theta_{\max, f} = 0.2895406. \]

\[\psi_{\min, nf} = -0.1028613, \psi_{\min, f} = -0.0998961. \]
\[\theta_{\max, nf} = 0.3988945, \theta_{\max, f} = 0.518526. \]

\[\psi_{\min, nf} = -0.1027432, \psi_{\min, f} = -0.1070041 \]
\[\theta_{\max, nf} = 0.4205886, \theta_{\max, f} = 0.5522865. \]

Fig. 2 streamlines and isotherms contours for various values for Cu-water nanofluid at \(\varphi = 0\% \) (solid), \(\varphi = 10\% \) (dash) and \(\phi = \pi/6 \). Increasing from top towards bottom.
ψ_{min,nf} = -0.1031985, \psi_{min,f} = -0.1023384.
θ_{max,nf} = 0.2354761, \theta_{max,f} = 0.2982305

ψ_{min,nf} = -0.0973557, \psi_{min,f} = -0.095029
ψ_{max,nf} = 0, \psi_{max,f} = 2.51E - 005
θ_{max,nf} = 0.4056342, \theta_{max,f} = 0.5312343.

ψ_{min,nf} = -0.0877071, \psi_{min,f} = -0.0787396.
ψ_{max,nf} = 0.0017282, \psi_{max,f} = 0.0159315.
θ_{max,nf} = 0.4234517, \theta_{max,f} = 0.5638728.

Fig. 3 streamlines and isotherms contours for various Ri = 0.05, 10, 100 values for Cu-water nanofluid at ϕ = 0% (solid), ϕ = 10% (dash) and ϕ = π / 2 . Increasing from top towards bottom.
Fig. 4 profiles of the local Nusselt number along the heat source with the variations of the inclination angle.

Fig. 5. profiles of the local Nusselt number along the heat source for variations of Richardson number.
Proceedings of
The First International
Conference on Engineering
Sciences’ Applications, ICESA
24-25 December / 2014