Principally Dual Stable Modules

Mehdi Abbas1 Asaad Al-hosainy2 *

1 Department of Mathematics, College of Science, Mustansiriya University, Iraq
2 Department of Mathematics, College of Science, Mustansiriya University, Iraq

*zsene12@yahoo.com

Abstract.

Another generalization of fully d-stable modules, in this paper was introduced. A module is principally d-stable if every cyclic submodule of it is d-stable. Quasi-projective principally d-stable module is fully d-stable. For finitely generated modules over Dedekind domains the two concepts (full and principal) d-stability of modules coincide. For regular modules over commutative rings, principal d-stability of modules is equivalent to commutativity and full d-stability of there endomorphism rings.

Keywords: fully (principally) d-stable module; quasi-projective, duo, regular module; Dedekind domain; endomorphism ring; hollow module; exchange property.

1. Introduction.

In two previous papers ([2] and [3]), we introduced the concept of fully d-stable modules and studied some generalizations of it. A submodule N of an R-module M is said to be d-stable if $N \subseteq \text{Ker}(\alpha)$ for every homomorphism $\alpha : M \rightarrow M/N$, the module M is said to be fully d-stable, if each of its submodules is d-stable [2]. Full d-stability is dual to the concept of full stability introduced by Abbas in [1], and both of these concepts are stronger than duo property of modules. A submodule N of an R-module M is said to be stable if $f(N) \subseteq N$, for any homomorphism $f : N \rightarrow M$, a module is fully stable of all of its submodules are stable [1]. In [1], it was proved that a module is fully stable if and only if each cyclic submodule is stable. Unfortunately it is not the case in full d-stability. This motivates introducing the concept of principally d-stable module which is a generalization of full d-stability. A module will be called principally d-stable if every cyclic submodule of it is d-stable. In this paper we studied this new concept and the conditions that make a principally d-stable module into a fully d-stable. In section 2 main properties of principal d-stable were investigated in addition, we see that quasi-projectivity is a sufficient condition for a principal d-stable module to be fully d-stable. Also we show that over Dedekind domain and integral domain with certain conditions, the two concepts, full (and principal) d-stability coincide. Links between the two dual concepts full stability and full d-stability, in certain conditions, also, was found . In section 3, under regular modules (in some sense), many characterizations to principally d-stable module, via endomorphism rings, were investigated.

Throughout, rings are associative having an identity(unless we state) and all modules are unital. R is a ring and M is a left R-module (simply we say module).

2. principally d-stable modules

Definition 2.1. A module is said to be principally d-stable if each of its cyclic submodule is d-stable.

Proposition 2.2. Any quasi-projective principally d-stable is fully d-stable.

Proof: By (Proposition 3.6. [2]).
Proposition 2.3. Every principally d-stable module is duo.

Proof: Let \(M \) be an \(R \)-module, \(f \) an endomorphism of \(M \), and \(N \) a submodule of \(M \). Let \(x \in N \), \(\pi \), be the natural epimorphism of \(M \) onto \(M/Rx \) and \(\alpha = \pi_x \circ f \), then by assumption \(\alpha(x) = 0 \), hence \(f(x) \in Rx \subset N \), that is \(f(N) \subset N \).

Definition 2.4. A ring \(R \) is right (left) principally d-stable if \(R_R (R) \) is principally d-stable.

The rings in this paper are assumed to have identity, this makes the concepts of duo, fully d-stability and principal d-stability coincide for rings. Note that a ring is right (left) duo if and only if every right (left) ideal is two sided ideal.

Proposition 2.5. A ring \(R \) is right (left) principally d-stable if and only if it is right (left) fully d-stable.

Proof: The (if part) is clear. We will prove the (only if part, the left case).

Assume that \(R \) is left principally d-stable, \(I \) a left ideal of \(R \) and \(\alpha : R \rightarrow R/I \) is an \(R \)-homomorphism. By assumption and the note before the proposition, \(I \) is a two sided ideal too, if \(x \in I \) then \(\alpha(x) = x\alpha(1) = xPA_1 \), since \(xPA_1 \in I \). Therefore, \(R \) is left fully d-stable.

In [3] we introduced minimal d-stable modules in which minimal submodules are d-stable. Since any minimal submodule is cyclic, so we conclude that any Principally d-stable module is minimal d-stable. The converse of this result is not true, as the \(Z \)-module \(I \) is minimal d-stable (trivially) but not principally d-stable (see remark 2.14).

Another condition which versus principal d-stability into full d-stability is in the following. First we need to introduce the following concept.

Definition 2.6. An \(R \)-module, \(M \) is said to have the quotient embedding property (qe-property, for short) if \(M/N \) can be embedded into \(M/Rx \) for each submodule \(N \) of \(M \) and each \(0 \neq x \in N \).

Remark 2.7. Let \(M \) be an \(R \)-module. If \(M/Rx \) is semisimple for each \(0 \neq x \in M \), then \(M \) has the qe-property. In particular every semisimple module has the qe-property.

Proof: If \(x \in N \), where \(N \) is a submodule of \(M \), then there is a natural epimorphism \(\delta : M/Rx \rightarrow M/N \) \((a + Rx \leftrightarrow a + N)\) with \(ker(\delta) = N/Rx \). Since \(M/Rx \) is semisimple, \(N/Rx \) is a direct summand of \(M/Rx \), that is, \(\delta \) is split epimorphism, hence \(\delta \) has a right inverse which is a monomorphism from \(M/N \) into \(M/Rx \).

Proposition 2.8. Let \(M \) be a principally d-stable \(R \)-module. If \(M \) has the qe-property, then \(M \) is fully d-stable.

Proof: Assume that \(M \) is a principally d-stable module, \(\alpha : M \rightarrow M/N \) is an \(R \)-homomorphism, where \(N \) is a submodule of \(M \). Let \(x \in N \), then by hypothesis there is a monomorphism \(\beta : M/N \rightarrow M/Rx \). Now \(\beta \alpha \) is an \(R \)-homomorphism from \(M \) into \(M/Rx \), so \(Rx \subset ker(\beta \alpha) = ker(\alpha) \), since \(\beta \) is a monomorphism. Hence \(N \subset ker(\alpha) \), since \(x \) is an arbitrary element of \(N \), and then \(M \) is fully d-stable.

From Proposition 2.8 and Remark 2.7 we conclude that, if \(M \) is principally d-stable and \(M/Rx \) is semisimple for each \(x \in M \) (or \(M \) itself is semisimple), then \(M \) is fully d-stable.

Note that the \(Z \)-module \(Z \) has the qe-property, but \(Z/4Z \) (for example) is not semisimple. On the other hand \(Z_{(p^\infty)} \) has the qe-property, which is not principally d-stable (see Remark 2.14). So we restate Proposition 2.8 in this way.
Corollary 2.9. Let \(\mathcal{M} \) be a module, with the qe- property. Then the following two statements are equivalent:

(i) \(\mathcal{M} \) is principally d-stable.

(ii) \(\mathcal{M} \) is fully d-stable.

Note that the \(\mathbb{Z} \)-module \(\mathcal{M} = \mathbb{Z} \oplus (\mathbb{Z}/2\mathbb{Z}) \) does not satisfy qe-property, since if \(x = (0,1) \), \(N = 2\mathbb{Z} \oplus (\mathbb{Z}/2\mathbb{Z}) \), then \(\mathcal{M} = 0 \oplus (\mathbb{Z}/2\mathbb{Z}) \) and \(\mathcal{M}/N \) cannot be embedded in \(\mathcal{M}/\mathbb{Z}x \), on the other hand \(\mathcal{M} \) is not principally d-stable (it is not duo), see Lemma 2.18 below.

Other condition can be regarded to deduce full d-stability from principal d-stability.

Theorem 2.10. Let \(\mathcal{M} \) be an \(R \) -module, with the property that any proper submodule of \(\mathcal{M} \) is contained in a cyclic submodule. Then \(\mathcal{M} \) is fully d-stable if it is principally d-stable.

Proof: Let \(\mathcal{N} \) be a submodule of \(\mathcal{M} \) contained in \(\mathcal{R}x \) (for some \(x \in \mathcal{M} \)), then \(\mathcal{N} \) is d-stable in \(\mathcal{R}x \) (since \(\mathcal{R}x \) is cyclic module and hence fully d-stable \([2]\)), also \(\mathcal{R}x \) is d-stable in \(\mathcal{M} \) (since \(\mathcal{M} \) is principally d-stable). Then by transitive property of d-stability (see \([2]\)) \(\mathcal{N} \) is d-stable in \(\mathcal{M} \). Therefore \(\mathcal{M} \) is fully d-stable.

Note that the condition of Theorem 2.10 and the qe-property are independent (although they have the same effect on principally d-stable modules). In the next example a module satisfying the qe-property but not the other will be discussed, while in example 2.12 a module having the property of Theorem 2.10 will be given that does not satisfy qe-property.

In \([2]\) we constructed an example of fully d-stable module which not quasi-projective, in the following, with the help of Corollary 2.9, an other example of a module which is not quasi-projective will be shown it is fully d-stable, first we prove it is principally d-stable and then it satisfies the qe-property. The direct proof of full d-stability is certainly more difficult.

Example 2.11. Let \(\mathcal{M} = \{a/b \in \mathbb{Q} \mid b \text{ is square free}\} \), the following properties can be observed for \(\mathcal{M} \):

1. \(\mathcal{M} = \sum_{p \in \text{PR}} \mathbb{Z}^{-1} \), where PR is the set of all prime numbers. (clear)

2. \(\mathcal{M} \) is a torsion-free uniform (not finitely generated) \(\mathbb{Z} \)-module. (clear)

3. \(\mathcal{M} \) is duo. \([10]\)

4. \(\mathcal{M} \) is not quasi-projective.

Proof: Recall the following fact from \([11]\), "Any torsion-free quasi-projective module over a Dedekind domain, which is not a complete discrete valuation ring, is torsionless" (Lemma 5.2, \([11]\)). We will show that \(\mathcal{M} \) is not torsionless. (Recall that an \(\mathbb{R} \)-module \(\mathcal{M} \) is torsionless if each non-zero element of \(\mathcal{M} \) has non-zero image under some \(\mathbb{R} \)-linear functional \(f \in \text{Hom}_\mathbb{R}(\mathcal{M}, \mathbb{R}) \). \([8]\))

Let \(f : \mathcal{M} \to \mathbb{Z} \) be a \(\mathbb{Z} \)-homomorphism and \(f(1) = n \neq 0 \), let \(q \) be any prime not dividing \(n \), then
\[n = f\left(\frac{q}{q}\right) = qf\left(\frac{1}{q}\right) = qk \text{ a contradiction. Hence } f(I) = 0 \text{ for each } f \in \text{Hom}_Z(M, Z). \quad \diamondsuit \]

5. \(M \) is principally d-stable.

Proof: Any cyclic submodule of \(M \) is of the form \(Z\frac{a}{b} \), \(\frac{a}{b} \in M \). Since a cyclic submodule is fully d-stable module and if it is d-stable in \(M \), then all its submodules are d-stable in \(M \) by transitive property of d-stability (see [2]), also, since \(Z\frac{a}{b} \subseteq Z\frac{1}{b} \), it is enough to prove that \(Z\frac{1}{b} \) are d-stable in \(M \) for \(\frac{1}{b} \in M \). Let \(N = Z\frac{1}{b} \), \(\alpha : M \to M/\langle N \rangle \), we will show first that \(\alpha(I) = 0 \) and then show that \(\alpha\left(\frac{1}{b}\right) = 0 \).

Assume that \(\alpha(I) = \frac{m}{n} + \langle N \rangle \) (note that \(\frac{m}{n} \in N \leftrightarrow n|\langle b \rangle \); also remember that both \(n \) and \(b \) are square free). Now \(\alpha(I) = \alpha\left(\frac{n}{n}\right) = n\alpha\left(\frac{1}{n}\right) \), if \(\alpha\left(\frac{1}{n}\right) = k + \langle N \rangle \), then \(\frac{nk}{1} + \langle N \rangle = \frac{m}{n} + \langle N \rangle \), hence \(\frac{m}{n} - \frac{nk}{1} = \frac{a}{b} \in N \), then \(\frac{mb - na}{n^2} = b\left(\frac{k}{1}\right) \). Since \(\frac{k}{1} \in M \), so \(\frac{mb - na}{n^2} \in M \) and we must have \(n|\langle b \rangle \), and then \(n|\langle b \rangle \) which implies \(\frac{m}{n} \in \langle N \rangle \), that is \(\alpha(I) = 0 \). Next, let \(\alpha\left(\frac{1}{b}\right) = \frac{p}{q} + \langle N \rangle \), we have \(0 = \alpha\left(\frac{1}{b}\right) = b\langle\frac{p}{q}\rangle + \langle N \rangle \), hence \(\frac{bp}{q} \in N \), that is, \(\frac{bp}{q} \in \langle N \rangle \), which implies \(\frac{p}{q} = \frac{c}{b^2} \), but \(\frac{p}{q} \in M \), so \(b|c \) and \(\frac{p}{q} \in N \), that is, \(\alpha\left(\frac{1}{b}\right) = 0 \), in other words \(N \subseteq \ker(\alpha) \), hence \(N \) is d-stable. \(\diamondsuit \)

6. \(M \) has the qe-property and hence (by Corollary 2.7) is fully d-stable.

Proof: First note that if \(y = \frac{a}{b} \) and \(x = \frac{1}{b} \) are elements of \(M \) then \(M/Zx \) can be embedded in \(M/Zy \) by \(m + Zx \mapsto am + Zy \). Let \(x = \frac{1}{b} \) and \(b = p_1p_2...p_n \) for distinct primes \(p_1, p_2, ..., p_n \), let \(A \) be a submodule of \(M \) containing \(y \). Let \(N = \langle p_1, p_2, ..., p_n \rangle \), \(J = \langle p \in \text{PR} \ | 1/p \rangle \) is in the set of generators of \(A \), \(K = \text{PR} - J \) and \(L = \text{PR} - N \). It is clear that \(N \subseteq J \) and \(K \subseteq L \), also it is clear that \(M = A + B \), where \(B = \sum_{p \in K} Z\frac{1}{p} \) and note that \(A \cap B = Z \).

Now \(M/A \cong B/Z \cong \bigoplus_{p \in K} (Z/pZ) \). On the other hand \(Zx = \sum_{p \in N} Z\frac{1}{p} \). Hence
\[\frac{M}{x} \cong \sum_{p \in \mathbb{L}} \frac{1}{p} \mathbb{Z} \cong \bigoplus_{p \in \mathbb{L}} (\mathbb{Z}/p\mathbb{Z}) \], then we conclude that \(M/A \) can be embedded in \(M/Zx \) (hence in \(M/Zy \), by the above note).

\[\Diamond \]

Example 2.12. Let \(M = \mathbb{Z}[x] \), the ring of polynomials over \(\mathbb{Z} \), be considered as a module over itself, then \(M \) is a cyclic module and hence it satisfies the property of Theorem 2.8. Let \(N = \langle 2, x \rangle \) be the ideal of \(M \) generated by 2 and \(x \), it is known that \(N \) is a maximal (submodule) in \(M \) and hence \(M/N \) is simple, while \(M/\langle x \rangle \cong \mathbb{Z} \) which contain no simple submodule, that is, \(M/N \) cannot be embedded in \(M/\langle x \rangle \), so \(M \) does not satisfy the qe-property. Certainly, \(M \) is a fully d-stable module. \(\Diamond \)

In [3], two equivalent concepts were introduced and investigated, namely, fully pseudo d-stable and d-terse modules. The last one is: "a module is d-terse if it has no distinct isomorphic factors". An analogous necessary (but not sufficient) condition for principal d-stability is proved in the following.

Proposition 2.13. Let \(M \) be a principally d-stable module. If \(x, y \in M \) and \(M/Rx \cong M/Ry \), then \(Rx = Ry \).

Proof: Let \(\varphi : M/Rx \to M/Ry \) be an isomorphism, \(\pi_x \) and \(\pi_y \) be the natural epimorphisms onto \(M/Rx \) and \(M/Ry \) respectively, let \(\alpha = \varphi \circ \pi_x, \beta = \varphi^{-1} \circ \pi_y \), then (by hypothesis \(M \) is principally d-stable) we have \(Ry \subseteq \ker \alpha = \pi_x^{-1}(\ker \varphi) = Rx \) and \(Rx \subseteq \ker \beta = \pi_y^{-1}(\ker \varphi^{-1}) = Ry \). Therefore \(Rx = Ry \).

\(\Diamond \)

Remark 2.14. By the above Proposition we can deduce, simply, that the \(\mathbb{Z} \)-module \(Q \) (which is not fully d-stable, see [2]) is not principally d-stable too. Note that \(Q/Z \cong Q/Zx \), for each \(x \in Q \). Similarly the \(\mathbb{Z} \)-module \(Z/(p^n) \) is isomorphic to each of its factors, that is, any two factors of it are isomorphic, hence it is not principally d-stable.

In the following we will investigate the coincidence of principal d-stability with full d-stability over certain type of rings. First we need to recall some facts about duo and quasi-projective modules.

Proposition 2.15. [10] Let \(R \) be a Dedekind domain. Then the following statements are equivalent for a finitely generated \(R \)-module \(M \):

(i) \(M \) is a duo module.

(ii) \(M \cong I \) for some ideal \(I \) of \(R \) or \(M \cong (R/P_1^{n_1}) \oplus \ldots \oplus (R/P_k^{n_k}) \) for some positive integers.

109
\(k, n_1, \ldots, n_k \) and distinct maximal ideals \(P_i \) (1 \(\leq \) \(i \) \(\leq \) \(k \)) of \(R \).

Note that the first possibility of statement (ii) means \(M \) is torsion free and the second is torsion.

Proposition 2.16. [11] A torsion module \(M \) over a Dedekind domain \(R \) is quasi-projective if and only if each \(P \)-primary component \(M_P \) is a direct sum copies of the same cyclic module \(R/P^k \) for some fixed positive integer \(k \) depending on \(P \).

Proposition 2.17. [11] A torsion module \(M \) over a Dedekind domain \(R \) is quasi-projective if and only if \(M \) is quasi-injective but not injective.

Now we are ready to prove the following theorem which leads, further, to a link between the two dual concepts, full stability and full d-stability in certain conditions.

Theorem 2.18. Let \(R \) be a Dedekind domain. Then the following statements are equivalent for a finitely generated \(R \)-module \(M \):

(i) \(M \) is duo.

(ii) \(M \) is fully d-stable.

(iii) \(M \) is principally d-stable.

Proof: (i) \(\Rightarrow \) (ii). By Proposition 2.15, \(M \) is a duo module implies either \(M \cong I \) for some ideal \(I \) of \(R \) (which is projective, since every ideal of a Dedekind domain is projective [4], p.215) or \(M \cong (R/P_1^{n_1}) \oplus \ldots \oplus (R/P_k^{n_k}) \) for some positive integers \(k, n_1, \ldots, n_k \) and distinct maximal ideals \(P_i \) (1 \(\leq \) \(i \) \(\leq \) \(k \)) of \(R \) (which is quasi-projective by Proposition 2.16). In any case \(M \) is fully d-stable ([2], Proposition 2.3).

(ii) \(\Rightarrow \) (iii). Clear by definitions.

(iii) \(\Rightarrow \) (i). by Corollary 2.2.

Corollary 2.19. For a finitely generated torsion module \(M \) over a Dedekind domain \(R \), the following statements are equivalent:

(i) \(M \) is fully stable.

(ii) \(M \) is fully d-stable.

Proof: \(M \) is fully stable implies \(M \) is duo, then by Proposition 2.10 and the note after it, we have \(M \cong (R/P_1^{n_1}) \oplus \ldots \oplus (R/P_k^{n_k}) \), which means that \(M \) is quasi-projective. Hence \(M \) is fully d-stable([2], Proposition 2.3).
Conversely, if M is fully d-stable, then it is duo and hence quasi-projective (see part one). Now by Proposition 2.17, M is quasi-injective. Therefore M is fully stable (see [1]).

Remarks 2.20.

(i) $Z_{(p^n)}$ is a torsion module over a Dedekind domain, which is fully stable [1] but not fully d-stable [2]. Note that this module is not finitely generated.

(ii) Z is a Dedekind domain, it is finitely generated module over itself, fully d-stable [2] but not fully stable [1]. It is clear that Z is torsion free Z-module.

(iii) By the above theorem and a Corollary in [1], we can conclude the following statement: "A finitely generated torsion module M over a Dedekind domain R is fully d-stable if and only if, for each $x,y \in M$,

$ann_R(y) = ann_R(x)$ implies $Rx = Ry$.

We need to recall another fact about duo modules, in order to prove a next result.

Lemma 2.21. [10] Let R be a domain. An R-module $M = M_1 \oplus M_2$, with a non zero torsion free submodule M_1, and a non zero submodule M_2, is not duo. \[\triangleleft\]

The proof of the following theorem can be found implicitly in the proof of Theorem 2.18, but we will give another proof.

Theorem 2.21. Let M be a finitely generated module over a P. I. D., R. Then M is principally d-stable if and only if it is fully d-stable.

Proof: Let M be a finitely generated module over a P. I. D., R. It is known that $M = F \oplus T(M)$, where F is a free module and $T(M)$ is the torsion submodule of M (see, for example, [7]). We have the following cases:

(i) $T(M) = 0$, then M is free, hence either $M \cong R$ which is fully d-stable, or $M \cong R \oplus \ldots \oplus R$, k times and $k > 1$, which implies M is not duo, so neither fully nor principally d-stable.

(ii) $F \neq 0$ and $T(M) \neq 0$, then by Lemma 2.21, M is not duo, so neither fully nor principally d-stable. (note: it is known that any free module over a P. I. D. is torsion free)

(iii) $F = 0$, then M is torsion, hence by the proof of Corollary 2.19 and that a principally d-stable module is duo, M is fully d-stable if and only if M is principally d-stable. (note that a P. I. D. is Dedekind domain) \[\triangleleft\]

Now we collect the cases and conditions that leads to the equivalence of the two concepts, full and principal d-stability, that we get (till now) by the following:

1. quasi-projective modules.
2. modules with q-e property.
3. finitely generated modules over Dedekind domain.
The following statement about principally d-stable modules, has an analogous statement in the case of fully d-stable which is proved in [2], but we will give a proof for completeness.

Proposition 2.22. If M is a torsion free principally d-stable module over an integral domain R which is not a field, then M is not injective.

Proof: Assume M is injective, then it is divisible. Let $0 \neq r$ be a non invertible element of R, then for each $x \in M$, there exists $y \in M$ such that $x = ry$. Define $f : M \to M$ by $f(x) = y \leftrightarrow x = ry$. f is an endomorphism of M (since M is torsion free). M is principally d-stable implies M is duo (Corollary 2.2), hence for each $x \in M$, there exists $s \in R$ such that $f(x) = sx$ [10], so we have $rsx = x$ which implies $rs = 1$ (since M is torsion free) and this contradicts the assumption that r is not invertible. Therefore M is not injective.

Corollary 2.23. Let R be an integral domain, which is not a field, M an injective principally d-stable module over R, then M is not torsion free.

In the following we have another result about torsion free modules over integral domain. Recall that, in case of torsion free module M the "rank" is the maximum number (cardinal number) of linearly independent elements in M (see [6]).

Proposition 2.24. Let M be a torsion free module over an integral domain R. If M is quasi-injective of rank >1, then M is not duo, consequently neither fully d-stable nor principally d-stable.

Proof: Assume that x, y are two linearly independent elements in M, then $Rx \cap Ry = \emptyset$. Let $f : Rx \to M$ be defined by $f(rx) = ry$, then f is an R-homomorphism, that can be extended to an endomorphism, say g, of M (since M is quasi-injective) and it is clear that $g(Rx) = Ry \subset Rx$, that is, M is not duo.

In [3], we prove an equivalent statement to the definition of fully d-stable module which was "M is fully d-stable if and only if $\ker g \subset \ker f$ for each R- module A and any two R-homomorphisms $f, g : M \to A$ with g surjective". In the end of this section a similar statement for principally d-stable module can be stated, and the proof will be omitted.

Proposition 2.25. Let M be an R-module. M is principally d-stable if and only if for each R- module A and any two R-homomorphisms $f, g : M \to A$ with g surjective and $\ker g$ is cyclic in M, $\ker g \subset \ker f$.

3- Full d-stability and Endomorphism ring

The endomorphism ring of a module, sometimes, gives additional information about the module itself, so it is natural to investigate the endomorphism ring of a fully d-stable module (and in particular principally d-stable module), to this aim we have the following results.

First recall the concept of "regular module", which is a generalization of the concept of Von Neumann's regular
ring, "there have been considered three types of modules by Fieldhouse, Ware and Zelmanowitz each called regular. The Fieldhouse-regular module was defined to be a module whose submodules are pure submodules and the Ware-regular module was defined as a projective module in which every submodule is a direct summand, while a left module M over a ring R is called a Zelmanowitz-regular module if for each $x \in M$ there is a homomorphism $f : M \to R$ such that $f(x)x = x$" [5]. Azumaya in [5], consider the following definition "a module M is regular if every cyclic submodule is a direct summand". This definition is more convenience for our aim since the projectivity condition leads to the equivalence of the duo, fully d-stability and principal d-stability concepts, but we need to investigate the last two separately. So we will consider the Azumaya-regular definition:

Definition 3.1. [5] An R-module is regular if each of its cyclic submodule is a direct summand.

Proposition 3.2. If M is a regular R-module and if $\text{End}_R(M)$ is commutative, then M is a duo module.

Proof: Let $f \in \text{End}_R(M)$ and $x \in M$, since M is regular, we have $M = Rx \oplus L$ for some submodule L of M. Assume that $f(x) = rx + l$, $r \in R$ and $l \in L$. Let $\pi : M \to M$ defined by $\pi(sx + l) = sx$ for each $s \in R, t \in L$.

Now, $f(\pi(x)) = f(x) = rx + l$ and $\pi(f(x)) = rx$, but $\text{End}_R(M)$ is commutative, so, $f(x) = rx$. Therefore M is a duo module. (lemma 1.1, [10])

Corollary 3.3. If M is a regular R-module and if $\text{End}_R(M)$ is commutative, then M is principally d-stable.

Proof: By proposition 3.2 M is duo and by ([2], proposition 3.1) any direct summand of M is d-stable, but M is regular, hence any cyclic submodule is d-stable.

Corollary 3.4. If M is a regular quasi-projective R-module and if $\text{End}_R(M)$ is commutative, then M is fully d-stable.

Lemma 3.5. If R is a commutative ring and M is a duo R-module, then $\text{End}_R(M)$ is commutative.

Proof: Let $f, g \in \text{End}_R(M)$ and $x \in M$, then $f(x) = rx$ and $g(x) = sx$ for some $r, s \in R$ (lemma 1.1, [10]). Hence $f(g(x)) = f(sx) = sf(x) = srx$ and $g(f(x)) = g(rx) = rg(x) = rsx$, since R is commutative, we have $f(g(x)) = g(f(x))$. Therefore $\text{End}_R(M)$ is commutative.

Recall that in [2], we show that "every quasi-projective duo R-module is fully d-stable. So we have the following result.

Corollary 3.6. If R is a commutative ring, and M is a regular quasi-projective R-module, then M is fully d-stable if and only if, $\text{End}_R(M)$ is commutative.

Proof: (⇒) by lemma 3.5 and ([2], proposition 2.3).

(⇐) by proposition 3.2 and ([2], proposition 2.3).

Corollary 3.7. If R is a commutative ring, and M is a regular R-module, then M is principally d-stable if and only if, $\text{End}_R(M)$ is commutative.

Proof: (⇒) by lemma 3.5 and corollary 2.2. (⇐) by corollary 3.3.
Corollary 3.8. If R is a commutative ring and M is a regular quasi-projective R–module, then M is fully d-stable if and only if, $\text{End}_R(M)$ is fully d-stable.

Lemma 3.9. If M is a regular R–module, $x \in M$ and $\alpha : M \rightarrow M/Rx$, then α can be lifted to an endomorphism of M.

Proof: Since M is regular, $M = Rx \oplus L$, for some submodule L of M, let $m \in M$, and assume that $\alpha(m) = rx + l$, $r \in R$ and $l \in L$. then we can write $\alpha(m) = l + Rx$, $l \in L$. also l is unique for each $m \in M$ for if $l_1 + Rx = l_2 + Rx$, then $l_1 - l_2 \in R \cap L = 0$. Hence we can define $f : M \rightarrow M$ by $f(m) = l \Leftrightarrow \alpha(m) = l + Rx$, it clear that $\pi \circ f = \alpha$.

We can summarize the previous results in the following Corollary.

Corollary 3.10. If R is a commutative ring, M is a regular R–module, then the following statements are equivalent:

1. M is principally d-stable.
2. $\text{End}_R(M)$ is a commutative ring.
3. $\text{End}_R(M)$ is fully d-stable.

A similar result is found in [1] but in place of statement 1 there was "M is a fully stable module", from which we get a link between full stability and principal d-stability, that is,

Corollary 3.11. If R is a commutative ring, M is a regular R–module, then the following statements are equivalent:

1. M is fully stable.
2. M is principally d-stable.

Regularity of a module (in the mentioned sense) has other effect for d-stability (even stability), see the following.

Proposition 3.12. Let M be a torsion free module over an integral module R. If M is regular (but not simple), then it is not duo and consequently neither fully d-stable nor principally d-stable and not fully stable.

Proof: Let $0 \neq x \in M$ such that $M \neq Rx$ then $M = Rx \oplus N$ for some nonzero submodule N of M, but Rx is torsion free, so by Lemma 2.21 M is not duo.

Other properties can be added for the endomorphism ring of a module, when it is hollow, (that is, the sum of any two proper submodules does not equal the module itself). Recall that an R–module M is hopfian if every surjective endomorphism of M is an isomorphism.

Proposition 3.13. If M is a fully d-stable module over a commutative ring R, and if M is hollow, then $\text{End}_R(M)$ is a commutative local ring.

Proof: Since M is a fully d-stable, it is duo and hence by lemma 3.5 $\text{End}_R(M)$ is a commutative ring. Now M is hopfian (see [2], Proposition 2.16), hence any non invertible element of $\text{End}_R(M)$ is not surjective. Let $L = \{ f \in \text{End}_R(M) : \text{Im} f \neq M \}$, L is the subset of all non invertible elements of $\text{End}_R(M)$. If $f, g \in L$, then $\text{Im}(f + g) \subset (\text{Im} f) + (\text{Im} g) \neq M$ (since M is hollow), hence $f + g \in L$, that is, L is
additively closed, and $\text{End}_R(M)$ is local (see [6], 7.1.1 and 7.1.2).

Recall that, a module M has the exchange property if for any index set I, whenever $M \oplus N = \bigoplus_{i \in I} A_i$, for modules N and A_i, then $M \oplus N = M \oplus (\bigoplus_{i \in I} B_i)$ for submodules B_i of A_i, $i \in I$ (see [9]). Also, it is known that "An indecomposable module has the exchange property if and only if its endomorphism ring is local" (see [12]). Using this remark, proposition 3.10 and the fact that hollow module is indecomposable, we have the following:

Corollary 3.14. A fully d-stable hollow module has the exchange property.

R.B. Warfield proved the following: Let M be a module with a local endomorphism ring and suppose A and B are modules such that $A \oplus M \cong B \oplus M$, then $A \cong B$ (see [12]).

Hence we can add the following corollary:

Corollary 3.15. A fully d-stable hollow module has the cancellation property.

REFERENCES