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Abstract

The performance properties of the square loop aat€MO), Minkowski island of
one iteration (M1), and Minkowski island of two ri¢ions (M2) have been
investigated using NEC4 which is moment-method-etlasoftware. The numerical
simulations show that Minkowski island fractals cde used to achieve
miniaturization in antenna systems while keeping idantical electromagnetic
performance. It is demonstrated that M1 and M2 rarde exhibit multiband and
broadband behavior, and as the number of iteratminghe Minkowski fractal
increases, the resonant frequencies increase anbatimdwidth of each single band
increases. Also, it is found that increasing thenber of iterations of the fractal
antenna causes a decrease in the antenna gaihjmymdance, and voltage standing
wave ratio, and it enhances the antenna matching



. INTRODUCTION

With the widespread proliferation of telecommutima technology in recent
years, the need for small-size multiband antenm@asitcreased manifold. However,
an arbitrary reduction in the antenna size woulsultein a large reactance and
deterioration in the radiation efficiency. As awg@n to minimizing the antenna size
while keeping high radiation efficiency, fractaltamnas can be implemented. A
fractal is a rough or fragmented geometric shapedhn be subdivided in parts, each
of which is (at least approximately) a reduced-sizepy of the whole
[Mandelbrot(1983), Barnslet.al (1988), Peitgenet.al (1990), and Jonest.al
(1990)]. Fractal are space filling contours, megrafectrically large features can be
efficiently packed into small areas [Falconer (1280d Lauwerier (1990)]. Since the
electrical lengths play such an important rolenteana design, this efficient packing
can be used as a viable miniaturization techniieiaturization of a loop antenna
using fractals was shown by Cohen [Cohen (1995)CGotien (1996)]. A first attempt
to explore the multifrequency properties of fragtak radiating structures was done
by Puente and Pous [Puente and Pous (1996)].

In many cases, the use of fractal antennas capliingircuit design, reduce
construction costs, and improve reliability. Beaérsctal antennas are self-loading,
no antenna tuning coils or capacitors are neces€dtgn they do not require any
matching components to achieve multiband or broadbperformance. Fractal
antennas can take on various shapes and forms. d\those currently reported in the
literature include koch fractal [Puerdieal (1998)], the Sierpinski gasket [Puestel
(1998) and Werneret.al (1998)], Hilbert curve [Vinoyet.al (2001)], and the
Minkowski island fractals [Gianvittorio and SamiO2)]. Some of these geometries
have recently been pursued for antenna applicatimesause of their inherent
multiband nature. However, incorporation of fracggometries into the antenna
structures, and various aspects of their optinopatare still in the incipient stages.
The majority of this paper will be focused upon thenkowski island fractal
antennas.

1. MINKOWSKI ISLAND FRACTAL GEOMETRY

In order for an antenna to work equally well dtfedquencies, it must satisfy
two criteria: it must be symmetrical about a poard it must be self-similar, having
the same basic appearance at every scale: thiah&s to be fractal. The shape of the
fractal is formed by an iterative mathematical s This process can be described
by an iterative function system (IFS) algorithm,iethis based upon a series of affine
transformations [Werner and Ganguly (2003)]. Anrafftransformation in the plane
w can be written as:
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where X% and % are the coordinates of point x. {Er,=r with O<r<1, and,=06,=6, the
IFS transformation is a contractive similarity (Bsyare preserved) where r is the



scale factor ané is the rotation angle. The column matrix t is jagtanslation on the
plane.

Applying several of these transformations in aursiwe way, the Minkowski
island fractals are obtained as depicted in Fighk intiator is a square which can be
regarded as a zeroth order of the Minkowski islfnadtal (MO). Each side of the
square is modeled with 10 segments each of thema leaggth of 6 cm and a diameter
of 2mm. The Minkowski island fractal of one itemati(M1) is formed by displacing
the middle third of each side by some fraction /8f By applying the same procedure
on M1, the Minkowski island fractal of second it&wa (M2) is obtained. It should be
pointed out that the area of M1 is 37.4% smallantthat of MO, and the area of M2
is 54.5% smaller than that of MO.

1. NUMERICAL SIMULATIONS

Numerical simulations were done using NEC4 WIN9M,Vwhich is a
moment-method-based software. The moment methotlesnpn approximation of
integral equations in terms of unknown currents) 16f the body [Stutzman and
Thiele (1998) and Barlevy and Sami ((2001)]. Thelypoanay either be a length of
perfectly conducting wire or a perfectly conductsgface. The integral equation for
the unknown current I() induced on the wires follows directly from enfoig the
boundary condition, which implies that, the tangdrtomponent of the electric field
vector to vanish on the surface of perfectly comtidgcwires. The moment method
incorporates periodic boundary conditions. Thi®w for only one element of the
periodic array to be simulated. When studying aaiie elements such as fractals, this
saves time and allows wide frequency sweeps thatsémne cases would not
otherwise fit into the limitations of the computif@rdware. Dielectrics were not
incorporated, although some of the practical imgetations do require dielectric
support.

Since all details of the radiation pattern follonwrh knowledge of the electric
and magnetic dipole moments of the charge and mudistribution in the antenna,
these factors should be analyzed. For MO antem@afeted source is placed at the
middle of the upper side. The current distributi@sembled a sinusiod pattern.
Through the program simulations, it was shown tiet current is able to flow
through the fractal wire almost as if it were flogithrough a straight wire of the
same effective length. The current distributiogiigen by

|1=—|2=;D/ |, cosky) |y|s% 2)

where | and } are the currents on the lower and upper sideseo$quare loop, and k
is the wave vector.

l,=-l,=2 I, sin() |z|s% &)

where } and } are the currents on the left and right sides.

Since the vector potential (A) of the loop is eEngral given by [Stutzman and
Thiele (1998)]
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and since the electric field vector (E) is given by
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then by using the expression [Stutzman and Thi&eg)]
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Equation (9) gives the electric far field.

Radiation patterns were generated at the resdreqiencies of the antenna.
The resonant frequencies could be predicted froenplot of standing wave ratio
(SWR) versus the frequency as shown in Fig.2. rit lsa noted from this figure that
MO antenna has one resonant frequency at 135 MHzamenna has three resonant
frequencies at 135, 248, and 480 MHz, and M2 amtéas four resonant frequencies
at 135, 245, 335, and 455 MHz. It is interestingntte that Minkowski fractal
antennas are not only broadband, but they also dstnate multiband effects. This is
due to the coupling between the wires. As moreaostand iterations of the fractal
are added, the coupling becomes more complicatedlifierent segments of the wire
resonate at different frequencies. It is worth noemhg that as the number of
iterations of the fractal increases, the antenrgarhare resonant frequencies due to
the self similarity in the geometry, and the bardttviof each single band increases.
The values of SWR for a 50 transmission line at f=135 MHz for MO, M1, and M2
antennas are 2.62, 1.34, and 1.02 respectively.rddiation patterns at the resonant
frequency of 135 MHz for MO, M1, and M2 antennas ahown in Fig.3. The
corresponding three dimentional plots of the ragimpatterns are depicted in Fig.4. It
is interesting to note that the radiation patteshdMO, M1, and M2 antennas are



almost the same. This indicates that these anteembaghit virtually identical
electromagnetic radiation behavior, independernhefdifferences in antenna size and
geometry. What is also worth mentioning is the knty between the other band’'s
patterns of each M1 amd M2 antenna. This is theofpfor a truly multiband
performance of the antenna.

The input impedance of a small linear diopoleenigth () and wire radias (a)
can be approximated by [Balanis (1997)]
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Or it can be measured, as it is done in this wbyka rotation on the Smith chart to
adjust the model of antenna to an RLC circuit. $nath charts for MO, M1, and M2
antennas centered at the frequency of 135 MHz epecigéd in Fig. 5. This figure
shows that the matching of M2 antenna is bettem the matching of M1 antenna,
and this in turn is better than the matching of lsidenna. The input impedances of
MO, M1, and M2 antennas at the frequency of 135 NiHz 124.83-j25.03, 66.83-
j2.14Q, and 49-j0.8 respectively.

Other aspects of the Minkowski fractal antennafguerance properties to
consider are the gain and the half power beamwldBBW). The gains of MO, M1,
and M2 antennas relative to an isotropic sourceiclwhadiates equally in all
directions, were computed to be 2.98, 2.62, an@ #Bi respectively. The HPBW
was found to be 88or MO antenna and 9Gor each of M1 and M2 antenna. A
summary of the performance properties of the ingattd antennas at the resonant
frequency of 135 MHz is presented in Table 1.



ANTENNASAT THE RESONAT FREQUENCY

TABLE 1
PERFORMANCE CHARACTERISTICSOF THE MINKOWSKI ISLAND

Parameter MO Antenna M1 Antenna M2 Antenna
SWR 2.62 1.34 1.02
Input Impedance) 124.83-j25.05 66.83-j2.14 49-j0.5
Gain (dBi) 2.98 2.62 2.32
HPBW 88 90 90
Reduction of Area 0% 37.4% 54.4%

V. CONCLUSIONS

It is interesting to note that Minkowski fractaltannas are not only broadband, but
they also demonstrate multiband effects. This ie tlu the coupling between the
wires. As more contours and iterations of the &hate added, the coupling becomes
more complicated and different segments of the vasenate at different frequencies.
It is worth mentioning that as the number of itenas of the fractal increases, the
antenna has more resonant frequencies due to lth&@rs#arity in the geometry, and
the bandwidth of each single band increaltskowski island fractals can be used to
achieve miniaturization in antenna systems whileepkey an identical
electromagnetic performance to the square loopnaat€MQ0). A size reduction of
37.4% was achieved using the M1 design over the avittnna. A further size
reduction of 54.4% was achieved using the M2 desiger the MO antenna. It is
interesting to note that the radiation pattern®@f, M1, and M2 antennas are almost
the same. This indicates that these antennas éxiriiially identical electromagnetic
radiation behavior, independent of the differenoesntenna size and geometry. What
is also worth mentioning is the similarity betweée other band’s patterns of each
M1 and M2 antenna. This is the proof for a trulyltiband performance of the
antenna.
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Fig. 1. Geometry of Minkowski island fractal of (a) zeroth order (MO), (b) one
iteration (M1), and (c) two iterations (M2).
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Fig. 2. SWR versusthe frequency for (a) MO antenna, (b) M1 antenna, and (c) M2
antenna.
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Fig. 3. Radiation pattern at the resonant frequency of 135MHzfor (a) MO
antenna, (b) M1 antenna, and (c) M2 antenna.
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Fig. 4. 3-D radiation pattern at the resonant frequency of 1356MHzfor (a) MO

and (c) M2 antenna.
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Fig. 5. Smith chart of (a) MO antenna, (b) M1 antenna, and
(c) M2 antenna centered at 135MHz
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