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  خواص الأداء لهوائيات منكوفسكي الكسورية
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  صةالخلا

وائي مينكوقســكي ذي وهــ ذي تكــرار واحــد  ســكيوهــوائي مينكوف ةالمربعــ الحلقــةتمــت دراســة خــواص الاداء لهــوائي 

اوضحت المحاكاة العدديـة ان هوائيـات مينكوفسـكي  وقد.) NEC4( البرنامج الحاسوبي تكرارين، وذلك باستعمال 

وقــد . مـع المحافظـة علـى نفـس الاداء الكهرومغناطيسـي تتقليـل حجـم منظومـات الهوائيـامـن الممكـن ان تسـتعمل ل

متعدد وعـريض الحـزم،  لهما تصرف كراريند وهوائي مينكوفسكي ذا التحذا التكرار الوا تبين ان هوائي مينكوفسكي

بزيـادة كما وجد انه . حزمةعرض الازداد ازداد التردد الرنيني و  ازداد عدد التكرار لهوائي منكوفسكي كلماوانه كلما 

، فــي ة فولتيــة الموجــة الواقفــة تقــلمقاومــة الــدخول ونســبكــلا مــن ربــح الهــوائي و  عــدد التكــرار للهــوائي الكســوري فــان

    .انسجام الهوائي يتحسنحين ان 

  

Abstract 

The performance properties of the square loop antenna (MO), Minkowski island of 
one iteration (M1), and Minkowski island of two iterations (M2) have been 
investigated using NEC4 which is moment-method- based software. The numerical 
simulations show that Minkowski island fractals can be used to achieve 
miniaturization in antenna systems while keeping an identical electromagnetic 
performance. It is demonstrated that M1 and M2 antennas exhibit multiband and 
broadband behavior, and as the number of iterations of the Minkowski fractal 
increases, the resonant frequencies increase and the bandwidth of each single band 
increases. Also, it is found that increasing the number of iterations of the fractal 
antenna causes a decrease in the antenna gain, input impedance, and voltage standing 
wave ratio, and it enhances the antenna matching                    
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I. INTRODUCTION 
 With the widespread proliferation of telecommunication technology in recent 
years, the need for small-size multiband antennas has increased manifold. However, 
an arbitrary reduction in the antenna size would result in a large reactance and 
deterioration in the radiation efficiency. As a solution to minimizing the antenna size 
while keeping high radiation efficiency, fractal antennas can be implemented. A 
fractal is a rough or fragmented geometric shape that can be subdivided in parts, each 
of which is (at least approximately) a reduced-size copy of the whole 
[Mandelbrot(1983), Barnsley et.al (1988), Peitgen et.al (1990), and Jones et.al 
(1990)]. Fractal are space filling contours, meaning electrically large features can be 
efficiently packed into small areas [Falconer (1990) and Lauwerier (1990)]. Since the 
electrical lengths play such an important role in antenna design, this efficient packing 
can be used as a viable miniaturization technique. Miniaturization of a loop antenna 
using fractals was shown by Cohen [Cohen (1995) and Cohen (1996)]. A first attempt 
to explore the multifrequency properties of fractals as radiating structures was done 
by Puente and Pous [Puente and Pous (1996)]. 

 In many cases, the use of fractal antennas can simplify circuit design, reduce 
construction costs, and improve reliability. Because fractal antennas are self-loading, 
no antenna tuning coils or capacitors are necessary. Often they do not require any 
matching components to achieve multiband or broadband performance. Fractal 
antennas can take on various shapes and forms. Among those currently reported in the 
literature include koch fractal [Puente et.al (1998)], the Sierpinski gasket [Puente et.al 
(1998) and Werner et.al (1998)], Hilbert curve [Vinoy et.al (2001)], and the 
Minkowski island fractals [Gianvittorio and Sami (2002)]. Some of these geometries 
have recently been pursued for antenna applications because of their inherent 
multiband nature. However, incorporation of fractal geometries into the antenna 
structures, and various aspects of their optimization, are still in the incipient stages. 
The majority of this paper will be focused upon the Minkowski island fractal 
antennas. 

 

II. MINKOWSKI ISLAND FRACTAL GEOMETRY 
 In order for an antenna to work equally well at all frequencies, it must satisfy 
two criteria: it must be symmetrical about a point, and it must be self-similar, having 
the same basic appearance at every scale: that is, it has to be fractal. The shape of the 
fractal is formed by an iterative mathematical process. This process can be described 
by an iterative function system (IFS) algorithm, which is based upon a series of affine 
transformations [Werner and Ganguly (2003)]. An affine transformation in the plane 
ω can be written as: 
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where x1 and x2 are the coordinates of point x. If r1=r2=r with 0<r<1, and θ1=θ2=θ, the 
IFS transformation is a contractive similarity (angles are preserved) where r is the 
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scale factor and θ is the rotation angle. The column matrix t is just a translation on the 
plane. 

 Applying several of these transformations in a recursive way, the Minkowski 
island fractals are obtained as depicted in Fig.1. The intiator is a square which can be 
regarded as a zeroth order of the Minkowski island fractal (MO). Each side of the 
square is modeled with 10 segments each of them has a length of 6 cm and a diameter 
of 2mm. The Minkowski island fractal of one iteration (M1) is formed by displacing 
the middle third of each side by some fraction of 1/3. By applying the same procedure 
on M1, the Minkowski island fractal of second iteration (M2) is obtained. It should be 
pointed out that the area of M1 is 37.4% smaller than that of MO, and the area of M2 
is 54.5% smaller than that of MO. 

 

III. NUMERICAL SIMULATIONS 
 Numerical simulations were done using NEC4 WIN95 VM, which is a 
moment-method-based software. The moment method implies an approximation of 
integral equations in terms of unknown currents I(l ) of the body [Stutzman and 
Thiele (1998) and Barlevy and Sami ((2001)]. The body may either be a length of 
perfectly conducting wire or a perfectly conducting surface. The integral equation for 
the unknown current I(l ) induced on the wires follows directly from enforcing the 
boundary condition, which implies that, the tangential component of the electric field 
vector to vanish on the surface of perfectly conducting wires. The moment method 
incorporates periodic boundary conditions. This allows for only one element of the 
periodic array to be simulated. When studying intricate elements such as fractals, this 
saves time and allows wide frequency sweeps that for some cases would not 
otherwise fit into the limitations of the computing hardware. Dielectrics were not 
incorporated, although some of the practical implementations do require dielectric 
support. 

Since all details of the radiation pattern follow from knowledge of the electric 
and magnetic dipole moments of the charge and current distribution in the antenna, 
these factors should be analyzed. For MO antenna, the feed source is placed at the 
middle of the upper side. The current distribution resembled a sinusiod pattern. 
Through the program simulations, it was shown that the current is able to flow 
through the fractal wire almost as if it were flowing through a straight wire of the 
same effective length. The current distribution is given by  
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where I1 and I2 are the currents on the lower and upper sides of the square loop, and k 
is the wave vector. 
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where I3 and I4 are the currents on the left and right sides.  

 Since the vector potential (A) of the loop is in general given by [Stutzman and 
Thiele (1998)]  
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and since the electric field vector (E) is given by  
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then by using the expression [Stutzman and Thiele (1998)]  
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one can obtain 
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Equation (9) gives the electric far field. 

 

 Radiation patterns were generated at the resonant frequencies of the antenna. 
The resonant frequencies could be predicted from the plot of standing wave ratio 
(SWR) versus the frequency as shown in Fig.2. It can be noted from this figure that 
MO antenna has one resonant frequency at 135 MHz, M1 antenna has three resonant 
frequencies at 135, 248, and 480 MHz, and M2 antenna has four resonant frequencies 
at 135, 245, 335, and 455 MHz. It is interesting to note that Minkowski fractal 
antennas are not only broadband, but they also demonstrate multiband effects. This is 
due to the coupling between the wires. As more contours and iterations of the fractal 
are added, the coupling becomes more complicated and different segments of the wire 
resonate at different frequencies. It is worth mentioning that as the number of 
iterations of the fractal increases, the antenna has more resonant frequencies due to 
the self similarity in the geometry, and the bandwidth of each single band increases. 
The values of SWR for a 50 Ω transmission line at f=135 MHz for MO, M1, and M2 
antennas are 2.62, 1.34, and 1.02 respectively. The radiation patterns at the resonant 
frequency of 135 MHz for MO, M1, and M2 antennas are shown in Fig.3. The 
corresponding three dimentional plots of the radiation patterns are depicted in Fig.4. It 
is interesting to note that the radiation patterns of MO, M1, and M2 antennas are 
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almost the same. This indicates that these antennas exhibit virtually identical 
electromagnetic radiation behavior, independent of the differences in antenna size and 
geometry. What is also worth mentioning is the similarity between the other band’s 
patterns of each M1 amd M2 antenna. This is the proof for a truly multiband 
performance of the antenna. 

 The input impedance of a small linear diopole of length (l ) and wire radias (a) 
can be approximated by [Balanis (1997)] 
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Or it can be measured, as it is done in this work, by a rotation on the Smith chart to 
adjust the model of antenna to an RLC circuit. The Smith charts for MO, M1, and M2 
antennas centered at the frequency of 135 MHz are depicted in Fig. 5. This figure 
shows that the matching of M2 antenna is better than the matching of M1 antenna, 
and this in turn is better than the matching of MO antenna. The input impedances of 
MO, M1, and M2 antennas at the frequency of 135 MHz are 124.83-j25.05Ω, 66.83-
j2.14Ω, and 49-j0.5Ω respectively. 

 Other aspects of the Minkowski fractal antenna performance properties to 
consider are the gain and the half power beamwidth (HPBW). The gains of MO, M1, 
and M2 antennas relative to an isotropic source, which radiates equally in all 
directions, were computed to be 2.98, 2.62, and 2.32 dBi respectively. The HPBW 
was found to be 88° for MO antenna and 90° for each of M1 and M2 antenna. A 
summary of the performance properties of the investigated antennas at the resonant 
frequency of 135 MHz is presented in Table 1. 
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TABLE 1 

PERFORMANCE CHARACTERISTICS OF THE MINKOWSKI ISLAND 
ANTENNAS AT THE RESONAT FREQUENCY 

 

Parameter MO Antenna M1 Antenna M2 Antenna 
SWR 2.62 1.34 1.02 

Input Impedance (Ω) 124.83-j25.05 66.83-j2.14 49-j0.5 

Gain (dBi) 2.98 2.62 2.32 

HPBW 88° 90° 90° 

Reduction of Area 0% 37.4% 54.4% 

 

 

IV.  CONCLUSIONS 

It is interesting to note that Minkowski fractal antennas are not only broadband, but 
they also demonstrate multiband effects. This is due to the coupling between the 
wires. As more contours and iterations of the fractal are added, the coupling becomes 
more complicated and different segments of the wire resonate at different frequencies. 
It is worth mentioning that as the number of iterations of the fractal increases, the 
antenna has more resonant frequencies due to the self similarity in the geometry, and 
the bandwidth of each single band increases. Minkowski island fractals can be used to 
achieve miniaturization in antenna systems while keeping an identical 
electromagnetic performance to the square loop antenna (M0). A size reduction of 
37.4% was achieved using the M1 design over the M0 antenna. A further size 
reduction of 54.4% was achieved using the M2 design over the M0 antenna. It is 
interesting to note that the radiation patterns of MO, M1, and M2 antennas are almost 
the same. This indicates that these antennas exhibit virtually identical electromagnetic 
radiation behavior, independent of the differences in antenna size and geometry. What 
is also worth mentioning is the similarity between the other band’s patterns of each 
M1 and M2 antenna. This is the proof for a truly multiband performance of the 
antenna. 
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Fig. 1. Geometry of Minkowski island fractal of (a) zeroth order (MO), (b) one 
iteration (M1), and (c) two iterations (M2). 

(a) 

(b) 

(c) 



  9 

  

(a) 

(b) 

(c) 

Fig. 2. SWR versus the frequency for (a) MO antenna, (b) M1 antenna, and (c) M2 
antenna. 
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(a) 

(b) 

(c) 

Fig. 3. Radiation pattern at the resonant frequency of 135MHz for (a) MO 
antenna, (b) M1 antenna, and (c) M2 antenna. 
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(a) 

(b) 

(c) 

Fig. 4. 3-D radiation pattern at the resonant frequency of 135MHz for (a) MO 
antenna, (b) M1 antenna, and (c) M2 antenna. 
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Fig. 5. Smith chart of (a) MO antenna, (b) M1 antenna, and  
(c) M2 antenna centered at 135MHz. 
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